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ANNOUNCEMENTS

Final class today!!!

Final reminder: let the instructor know if you plan to request a letter
grade.

Complete course evaluations.

OUTLINE

Finite mixture models

Continuous data -- univariate case

Illustration

Categorical data -- bivariate case
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CONTINUOUS DATA
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CONTINUOUS DATA -- UNIVARIATE CASE

Suppose we have univariate continuous data , for , where 

 is an unknown density.

Turns out that we can approximate "almost" any  with a mixture of

normals. Usual choices are

1. Location mixture (multimodal):

2. Scale mixture (unimodal and symmetric about the mean, but fatter
tails than a regular normal distribution):

3. Location-scale mixture (multimodal with potentially fat tails):

yi
iid
∼ f i, … ,n

f

f

f(y) =
K

∑
k=1

λkN (μk,σ2)

f(y) =
K

∑
k=1

λkN (μ,σ2
k
)

f(y) =
K

∑
k=1

λkN (μk,σ2
k
)
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LOCATION MIXTURE EXAMPLE

f(y) = 0.55N (−10, 4) + 0.30N (0, 4) + 0.15N (10, 4)
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SCALE MIXTURE EXAMPLE

f(y) = 0.55N (0, 1) + 0.30N (0, 5) + 0.15N (0, 10)
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LOCATION-SCALE MIXTURE EXAMPLE

f(y) = 0.55N (−10, 1) + 0.30N (0, 5) + 0.15N (10, 10)
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LOCATION MIXTURE OF NORMALS

Consider the location mixture . How can we

do inference?

Right now, we only have three unknowns: , 

, and .

For priors, the most obvious choices are

,

, for each , and

.

However, we do not want to use the likelihood with the sum in the
mixture. We prefer products!

f(y) = ∑K
k=1 λkN (μk, σ2)

λ = (λ1, … , λK)

μ = (μ1, … , μK) σ2

π[λ] = Dirichlet(α1, … , αK)

μk ∼ N (μ0, γ2
0 ) k = 1, … , K

σ2 ∼ IG( , )
ν0

2

ν0σ2
0

2
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DATA AUGMENTATION

This brings us the to concept of data augmentation, which we actually
already used in the mixture of multinomials.

Data augmentation is a commonly-used technique for designing MCMC
samplers using auxiliary/latent/hidden variables. Again, we have
already seen this.

Idea: introduce variable  that depends on the distribution of the
existing variables in such a way that the resulting conditional
distributions, with  included, are easier to sample from and/or result in
better mixing.

's are just latent/hidden variables that are introduced for the purpose
of simplifying/improving the sampler.

Z

Z

Z
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DATA AUGMENTATION

For example, suppose we want to sample from , but  and/or

 are complicated.

Choose  such that , , and  are easy to

sample from. Note that we have .

Alternatively, rewrite the model as  and specify  such that

where the resulting , , and  from the joint 

 are again easy to sample from.

Next, construct a Gibbs sampler to sample all three variables 

from .

Finally, throw away the sampled 's and from what we know about
Gibbs sampling, the samples  are from the desired .

p(x, y) p(x|y)

p(y|x)

p(z|x, y) p(x|y, z) p(y|x, z) p(z|x, y)

p(x, y, z) = p(z|x, y)p(x, y)

p(x, y|z) p(z)

p(x, y) = ∫ p(x, y|z)p(z)dz,

p(x|y, z) p(y|x, z) p(z|x, y)

p(x, y, z)

(X, Y , Z)

p(x, y, z)

Z

(X, Y ) p(x, y)
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LOCATION MIXTURE OF NORMALS

Back to location mixture .

Introduce latent variable .

Then, we have

, and

.

How does that help? Well, the observed data likelihood is now

which is much easier to work with.

f(y) = ∑K
k=1 λkN (μk, σ2)

zi ∈ {1, … , K}

yi|zi ∼ N (μzi
, σ2)

Pr(zi = k) = λk ≡
K

∏
k=1

λ
1[zi=k]
k

L [Y = (y1, … , yn)|Z = (z1, … , zn), λ, μ, σ2] =
n

∏
i=1

p (yi|zi, μzi , σ2)

=
n

∏
i=1

 exp{− (yi − μzi)
2}

1

√2πσ2

1

2σ2
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POSTERIOR INFERENCE

The joint posterior is

π (Z, μ, σ2, λ|Y ) ∝ [
n

∏
i=1

p (yi|zi, μzi , σ2)] ⋅ Pr(Z|μ, σ2, λ) ⋅ π(μ, σ2, λ)

∝ [
n

∏
i=1

p (yi|zi, μzi , σ2)] ⋅ Pr(Z|λ) ⋅ π(λ) ⋅ π(μ) ⋅ π(σ2)

∝ [
n

∏
i=1

 exp{− (yi − μzi)
2}]

      × [
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

]

      × [
K

∏
k=1

λαk−1
k

] .

      × [
K

∏
k=1

N (μk; μ0, γ2
0 )]

      × [IG(σ2; , )] .

1

√2πσ2

1

2σ2

ν0

2

ν0σ2
0

2
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FULL CONDITIONALS

For , sample  from a categorical distribution

(multinomial distribution with sample size one) with probabilities

i = 1, … , n zi ∈ {1, … , K}

Pr[zi = k| …] =

=

= .

Pr[yi, zi = k|μk, σ2, λk]

K

∑
l=1

Pr[yi, zi = l|μl, σ2, λl]

Pr[yi|zi = k, μk, σ2] ⋅ Pr[zi = k|λk]

K

∑
l=1

Pr[yi|zi = l, μl, σ2] ⋅ Pr[zi = l|λl]

λk ⋅ N (yi; μk, σ2)

K

∑
l=1

λl ⋅ N (yi; μl, σ2)
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FULL CONDITIONALS

Next, sample  from

where , the number of individuals assigned to cluster .

Sample the mean  for each cluster from

Finally, sample  from

λ = (λ1, … ,λK)

π[λ| …] ≡ Dirichlet (a1 + n1, … , ad + nd) ,

nk =
n

∑
i=1

1[zi = k] k

μk

π[μk| …] ≡ N (μk,n, γ2
k,n);

γ2
k,n = ;         μk,n = γ2

k,n [ ȳk + μ0] ,
1

+
nk

σ2

1

γ2
0

nk

σ2

1

γ2
0

σ2

π(σ2| …) = IG( , ) .

νn = ν0 + n;        σ2
n = [ν0σ

2
0 +

n

∑
i=1

(yi − μzi)
2] .

νn

2

νnσ
2
n

2

1

νn
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PRACTICAL CONSIDERATIONS

As we will see in the illustration very soon, the sampler for this model can
suffer from label switching.

For example, suppose our groups are men and women. Then, if we run
the sampler multiple times (starting from the same initial values),
sometimes it will settle on females as the first group, and sometimes on
females are the second group.

Specifically, MCMC on mixture models in general can suffer from label
switching.

Fortunately, results are still valid if we interpret them correctly.

Specifically, we should focus on quantities and estimands that are
invariant to permutations of the clusters. For example, look at marginal
quantities, instead of conditional ones.
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IN-CLASS ANALYSIS: MOVE TO THE

R SCRIPT HERE.
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https://sta-602l-s20.github.io/Course-Website/slides/lec-slides/Mixtures.R


OTHER PRACTICAL CONSIDERATIONS

So far we have assumed that the number of clusters  is known.

What if we don't know ?

Compare marginal likelihood for different choices of  and select 
with best performance.

Can also use other metrics, such as MSE, and so on.

Go Bayesian non-parametric: Dirichlet processes!

K

K

K K
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BACK TO CATEGORICAL DATA

AGAIN
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CATEGORICAL DATA: BIVARIATE CASE

Suppose we have data , for , where

.

This is just a two-way contingency table, so that we are interested in
estimating the probabilities .

Write , which is a  matrix of all the probabilities.

The likelihood is therefore

where  is just the number of observations

in cell  of the contingency table.

(yi1, yi2) i = 1, … ,n

yi1 ∈ {1, … ,D1}

yi2 ∈ {1, … ,D2}

Pr(yi1 = d1, yi2 = d2) = θd1d2

θ = {θd1d2
} D1 × D2

L[Y |θ] =
n

∏
i=1

D2

∏
d2=1

D1

∏
d1=1

θ
1[yi1=d1,yi2=d2]

d1d2
=

D2

∏
d2=1

D1

∏
d1=1

θ

n

∑
i=1

1[yi1=d1,yi2=d2]

d1d2
=

D2

∏
d2=1

D1

∏
d1=1

θ
nd1d2

d1d2

nd1d2 =
n

∑
i=1

1[yi1 = d1, yi2 = d2]

(d1, d2)

19 / 23



CATEGORICAL DATA: BIVARIATE CASE

How can we do Bayesian inference? Several options! Most common are:

Option 1: Follow the univariate approach.

rewrite the bivariate data as univariate data, that is, 
;

write  for each ;

specify Dirichlet prior as 
.

Option 2: Assume independence, then follow the univariate approach.

write , so that 

;

specify independent Dirichlet priors on  and , that is;

reduces number of parameters from  to .

yi ∈ {1, … ,D1D2}

Pr(yi = d) = νd d = 1, … ,D1D2

ν = (ν1, … , νD1D2
) ∼ Dirichlet(α1, … ,αD1D2

)

Pr(yi1 = d1, yi2 = d2) = Pr(yi1 = d1) Pr(yi2 = d2)

θd1d2 = λd1ψd2

λd1 ψd2

D1D2 − 1 D1 + D2 − 2
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CATEGORICAL DATA: BIVARIATE CASE

Option 3: Log-linear model

;

Specify priors (perhaps normal) on the parameters.

Option 4: Latent structure model

Assume conditional independence given a latent variable;

That is, write

This is a finite mixture of multinomial distributions;

θd1d2 =
eαd1

+βd2
+γd1d2

∑
d2

∑
d1

eαd1
+βd2

+γd1d2

θd1d2
= Pr(yi1 = d1, yi2 = d2) =

K

∑
k=1

Pr(yi1 = d1, yi2 = d2|zi = k) ⋅ Pr(zi = k)

=
K

∑
k=1

Pr(yi1 = d2|zi = k) ⋅ Pr(yi2 = d2|zi = k) ⋅ Pr(zi = k)

=
K

∑
k=1

λk,d1
ψk,d2

⋅ ωk.
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CATEGORICAL DATA: EXTENSIONS

For categorical data with more than two categorical variables, it is
relatively easy to extend the framework for latent structure models.

Clearly, there will be many more parameters (vectors and matrices) to
keep track of, depending on the number of clusters and number of
variables!

If interested, read up on finite mixture of products of multinomials.

Happy to provide resources for those interested!
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FINAL REMARKS

Unfortunately, this is as much as we can cover in this course.

I hope you learned a lot about Bayesian inference, even with the many
adjustments we had to make mid-semester due to the current state of the
world.

Now, just the final exam to look forward to!

It has been a pleasure having you all in my class...

For those who haven't, remember to complete the course evaluations!
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