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ANNOUNCEMENTS

Last homework (HW8) now online.

Reminder: let the instructor know if you plan to request a letter grade.

OUTLINE

Metropolis algorithm

Introduction and intuition

Algorithm

Illustration

Application to Poisson regression

Metropolis-Hastings algorithm
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METROPOLIS ALGORITHM
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INTRODUCTION

As a refresher, suppose  and suppose we specify a prior 

on .

Then as usual, we are interested in

As we already know, the challenge is that it is often difficult to compute 
.

Using the Monte Carlo method or Gibbs sampler, we have seen that we
don't need to know . As long as we have conjugate and semi-

conjugate priors, we can generate samples directly from .

What happens if we cannot sample directly from ?

Y ∼ π(y|θ) π(θ)

θ

π(θ|y) = .
π(θ)L(y; θ)

L(y)

L(y)

L(y)

π(θ|y)

π(θ|y)
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MOTIVATING EXAMPLE

To motivate our discussions on the Metropolis algorithm, let's explore a
simple example.

Suppose we wish to sample from the following density

This is a mixture of two normal densities, one with mode near 0 and the

other with mode near 3.
FYI: finite mixture models remains the most likely topic we will cover on

Friday plus next part of next Wednesday.

Anyway, let's use this density to explore the main ideas behind the
Metropolis sampler.

By the way, as you will see, we don't actually need to know the
normalizing constant for Metropolis sampling but for this example, find it
for practice! I will set it up in class.

π(θ|y) ∝ exp
− θ2

+ exp
− (θ−3)2

1

2
1

2

1

2
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MOTIVATING EXAMPLE

Let's take a look at the (normalized) density:

There are other ways of sampling from this density, but let's focus
specifically on the Metropolis algorithm here.
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METROPOLIS ALGORITHM

From a sampling perspective, we need to have a large group of values, 
 from  whose empirical distribution approximates 

.

That means that for any any two values  and , we want

Basically, we want to make sure that if  and  are in , the ratio

of the number of the  values equal to them properly

approximates .

How might we construct a group like this?

θ(1), … , θ(S) π(θ|y)

π(θ|y)

θa θb

÷ = × = ≈
#θ(s) = a

S

#θ(s) = b

S

#θ(s) = a

S

S

#θ(s) = b

#θ(s) = a

#θ(s) = b

π(θa|y)

π(θb|y)

θa θb π(θ|y)

θ(1), … , θ(S)

π(θa|y)

π(θb|y)

7 / 33



METROPOLIS ALGORITHM

Suppose we have a working group  at iteration , and need
to add a new value .

Consider a candidate value  that is close to  (we will get to how to

generate the candidate value in a minute). Should we set  or

not?

Well, we should probably compute  and see if .

Equivalently, look at .

By the way, notice that

which does not depend on the marginal likelihood we don't know!

θ(1), … , θ(s) s

θ(s+1)

θ⋆ θ(s)

θ(s+1) = θ⋆

π(θ⋆|y) π(θ⋆|y) > π(θ(s)|y)

r =
π(θ⋆|y)

π(θ(s)|y)

r = = ÷

= × = ,

π(θ⋆|y)

π(θ(s)|y)

L(y|θ⋆)π(θ⋆)

L(y)

L(y|θ(s))π(θ(s))

L(y)

L(y|θ⋆)π(θ⋆)

L(y)

L(y)

L(y|θ(s))π(θ(s))

L(y|θ⋆)π(θ⋆)

L(y|θ(s))π(θ(s))
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METROPOLIS ALGORITHM

If 

Intuition:  is already a part of the density we desire and the
density at  is even higher than the density at .

Action: set 

If ,

Intuition: relative frequency of values on our group 

equal to  should be . For every , include only a

fraction of an instance of .

Action: set  with probability  and  with
probability .

r > 1

θ(s)

θ⋆ θ(s)

θ(s+1) = θ⋆

r < 1

θ(1), … , θ(s)

θ⋆ ≈ r =
π(θ⋆|y)

π(θ(s)|y)
θ(s)

θ⋆

θ(s+1) = θ⋆ r θ(s+1) = θ(s)

1 − r
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METROPOLIS ALGORITHM

This is the basic intuition behind the Metropolis algorithm.

Where should the proposed value  come from?

Sample  close to the current value  using a symmetric proposal
distribution .  is actually a "family of proposal distributions",

indexed by the specific value of .

Here, symmetric means that .

The symmetric proposal is usually very simple with density concentrated
near , for example,  or .

After obtaining , either add it or add a copy of  to our current set of
values, depending on the value of .

θ⋆

θ⋆ θ(s)

g[θ⋆|θ(s)] g

θ(s)

g[θ⋆|θ(s)] = g[θ(s)|θ⋆]

θ(s) N (θ⋆; θ(s), δ2) Unif(θ⋆; θ(s) − δ, θ(s) + δ)

θ⋆ θ(s)

r
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METROPOLIS ALGORITHM

The algorithm proceeds as follows:

1. Given , generate a candidate value .

2. Compute the acceptance ratio

3. Set

which can be accomplished by sampling  independently

and setting

θ(1), … , θ(s) θ⋆ ∼ g[θ⋆|θ(s)]

r = = .
π(θ⋆|y)

π(θ(s)|y)

L(y|θ⋆)π(θ⋆)

L(y|θ(s))π(θ(s))

θ(s+1) = {
θ⋆ with probability min(r, 1)

θ(s) with probability 1 − min(r, 1)

u ∼ U(0, 1)

θ(s+1) = {
θ⋆ if u < r

θ(s) if otherwise
.
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METROPOLIS ALGORITHM

Once we obtain the samples, then we are back to using Monte Carlo
approximations for quantities of interest.

That is, we can again approximate posterior means, quantiles, and other
quantities of interest using the empirical distribution of our sampled
values.

Some notes:

The Metropolis chain ALWAYS moves to the proposed  at iteration 
 if  has higher target density than the current .

Sometimes, it also moves to a  value with lower density in
proportion to the density value itself.

This leads to a random, Markov process than naturally explores the
space according to the probability defined by , and hence

generates a sequence that, while dependent, eventually represents
draws from .

θ⋆

s + 1 θ⋆ θ(s)

θ⋆

π(θ|y)

π(θ|y)
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METROPOLIS ALGORITHM: CONVERGENCE

We will not cover the convergence theory behind Metropolis chains in
detail, but below are a few notes for those interested:

The Markov process generated under this condition is ergodic and
has a limiting distribution.

Here, think of ergodicity as meaning that the chain can move
anywhere at each step, which is ensured, for example, if 

 everywhere!

By construction, it turns out that the Metropolis chains are reversible,
so that convergence to  is assured.

Think of reversibility as being equivalent to symmetry of the joint
density of two consecutive  and  in the stationary process,
which we do have by using a symmetric proposal distribution.

If you want to learn more about convergence of MCMC chains, consider
taking one of the courses on stochastic processes, or Markov chain
theory.

g[θ⋆|θ(s)] > 0

π(θ|y)

θ(s) θ(s+1)
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METROPOLIS ALGORITHM: TUNING

Correlation between samples can be adjusted by selecting optimal  (i.e.,
spread of the distribution) in the proposal distribution

Decreasing correlation increases the effective sample size, increasing
rate of convergence, and improving the Monte Carlo approximation to
the posterior.

However,

 too small leads to  for most proposed values, a high
acceptance rate, but very small moves, leading to highly correlated
chain.

 too large can get "stuck" at the posterior mode(s) because  can
get very far away from the mode, leading to a very low acceptance
rate and again high correlation in the Markov chain.

Thus, good to implement several short runs of the algorithm varying 
and settle on one that yields acceptance rate in the range of 25-50%.

Burn-in (and thinning) is even more important here!

δ

δ r ≈ 1

δ θ⋆

δ
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METROPOLIS IN ACTION

Back to our example with

π(θ|y) ∝ exp
− θ2

+ exp
− (θ−3)2

1

2
1

2

1

2
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IN-CLASS ANALYSIS: MOVE TO THE

R SCRIPT HERE.
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https://sta-602l-s20.github.io/Course-Website/slides/lec-slides/Metropolis-I.R


POISSON REGRESSION
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COUNT DATA

We will use the Metropolis sampler on count data with predictors, so let's
first do some general review.

Suppose you have count data as your response variable.

For example, we may want to explain the number of c-sections carried
out in hospitals using potential predictors such as hospital type, (that is,
private vs public), location, size of the hospital, etc.

The models we have covered so far are not (completely) adequate for
count data with predictors.

Of course there are instances where linear regression, with some
transformations (especially taking logs) on the response variable, might
still work reasonably well for count data.

That's not the focus here, so we won't cover that.
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POISSON REGRESSION

As we have seen so far, a good distribution for modeling count data with
no limit on the total number of counts is the Poisson distribution.

As a reminder, the Poisson pmf is given by

Remember that

When our data fails this assumption, we may have what is known as
over-dispersion and may want to consider the Negative Binomial
distribution instead (actually easy to fit within the Bayesian framework!).

With predictors, index  with , so that each  is a function of .
Therefore, the random component of the glm is

Pr[Y = y] = ;     y = 0, 1, 2, … ;     λ > 0.
λye−λ

y!

E[Y = y] = V[Y = y] = λ.

λ i λi X

yi ∼ Poisson(λi);    i = 1, … , n.
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https://en.wikipedia.org/wiki/Negative_binomial_distribution


POISSON REGRESSION

We must ensure that  at any value of , therefore, we need a link
function that enforces this. A natural choice is

Combining these pieces give us our full mathematical representation for
the Poisson regression.

Clearly,  has a natural interpretation as the "expected count", and

so the 's are multiplicative effects on the expected counts.

For the frequentist version, in R, use the glm command but set the option
family = “poisson”.

λi > 0 X

log (λi) = β0 + β1xi1 + β2xi2 + … + βpxip.

λi

λi = eβ0+β1xi1+β2xi2+…+βpxip

eβj
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ANALYSIS OF HORSESHOE CRABS

We have data from a study of nesting horseshoe crabs (J. Brockmann,
Ethology, 102: 1–21, 1996). The data has been discussed in Agresti
(2002).

Each female horseshoe crab in the study had a male crab attached to
her in her nest.

The study investigated factors that affect whether the female crab had
any other males, called satellites, residing nearby her.

The response outcome for each female crab is her number of satellites.

We have several factors (including the female crab's color, spine
condition, weight, and carapace width) which may influence the
presence/absence of satellite males.

The data is called hcrabs in the R package rsq.
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ANALYSIS OF HORSESHOE CRABS

Let's fit the Poisson regression model to the data. In vector form, we have

where  is the number of satellites for female crab , and  contains the

intercept and female crab 's

color;

spine condition;

weight; and

carapace width.

Suppose we specify a normal prior for , 

.

Can you write down the posterior for ? Can you sample directly from it?

yi ∼ Poisson(λi);    i = 1, … , n;

log[λi] = βT xi

yi i xi

i

β = (β0, β1, β2, … , βp−1)

π(β) = Np(β0, Σ0)

β
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ANALYSIS OF HORSESHOE CRABS

We can use Metropolis to generate samples from the posterior.

First, we need a "symmetric" proposal density ; a

reasonable choice is usually a multivariate normal centered on .

What about the variance of the proposal density? We can use the

variance of the ols estimate, that is, , which we can scale

using , to tune the acceptance ratio.

Here,  is calculated as the sample variance of , for some

small constant , to avoid problems when .

So we have .

Finally, since we do not have any information apriori about , let's set

the prior for it to be .

β⋆ ∼ g[β⋆|β(s)]

β(s)

σ̂2(XT X)−1

δ

σ̂2 log[yi + c]

c yi = 0

g[β⋆|β(s)] = Np (β(s), δσ̂2(XT X)−1)

β

π(β) = Np(β0 = 0, Σ0 = I)
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ANALYSIS OF HORSESHOE CRABS

The Metropolis algorithm for this model is:

1. Given a current , generate a candidate value 

.

2. Compute the acceptance ratio

3. Sample  and set

β(s)

β⋆ ∼ g[β⋆|β(s)] = Np (β(s), δσ̂2(XT X)
−1
)

r = =

= .

π(β⋆|Y )

π(β(s)|Y )

π(β⋆) ⋅ L(Y |β⋆)

π(β(s)) ⋅ L(Y |β(s))

Np(β⋆|β0 = 0, Σ0 = I) ⋅
n

∏
i=1

Poisson(Yi|λi = exp{(β⋆)T
xi})

Np(β(s)|β0 = 0, Σ0 = I) ⋅
n

∏
i=1

Poisson(Yi|λi = exp{(β(s))
T

xi})

u ∼ U(0, 1)

β(s+1) = {
β⋆ if u < r

β(s) if otherwise
.
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IN-CLASS ANALYSIS: MOVE TO THE

R SCRIPT HERE.
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https://sta-602l-s20.github.io/Course-Website/slides/lec-slides/Horseshoe.R


ANALYSIS OF HORSESHOE CRABS

Based on the results from the R script, we have that the expected count of
male satellites

decreases by a multiplicative factor of  for the group
with color=4 (medium dark) in comparison to baseline group with
color=2 (medium light). That is, a 39% decrease.

increases by a multiplicative factor of  for the group
with spine=3 (both worn or broken) in comparison to baseline group
with spine=1 (both good). That is, an 8% increase.

Both width and weight increases the expected count of male satellites.

Take a look at the CIs to quantify uncertainty.

We can actually do a better job with model selection but I leave that to
you!!

e
−0.49

= 0.6126

e
0.08

= 1.0832
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METROPOLIS-HASTINGS ALGORITHM

27 / 33



METROPOLIS-HASTINGS ALGORITHM

Gibbs sampling and the Metropolis algorithm are special cases of the
Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm is more general in that it allows
arbitrary proposal distributions.

These can be symmetric around the current values, full conditionals, or
something else entirely as long as they do not depend on values in our
sequence that are previous to the most current values.

That last point is to ensure the sequence is a Markov chain!

In terms of how this works, the only real change from before is that now,
the acceptance probability should also incorporate the proposal density
when it is not symmetric.
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METROPOLIS-HASTINGS ALGORITHM

Suppose our target distribution is . The algorithm proceeds as

follows:

1. Given a current draw , propose a new value .

2. Compute the acceptance ratio

3. Sample  and set

p0(θ)

θ(s) θ⋆ ∼ gθ[θ⋆|θ(s)]

r = × .
p0(θ⋆)

p0(θ(s))

gθ[θ(s)|θ⋆]

gθ[θ⋆|θ(s)]

u ∼ U(0, 1)

θ(s+1) = {
θ⋆ if u < r

θ(s) if otherwise
.
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METROPOLIS-HASTINGS ALGORITHM

If  corresponds to a posterior distribution  as is often the case

for us, then we have

1. Propose a new value .

2. Compute the acceptance ratio

3. Sample  and set

p0(θ) π(θ|y)

θ⋆ ∼ gθ[θ⋆|θ(s)]

r = = × .
π(θ⋆|y)

π(θ(s)|y)

L(y|θ⋆)π(θ⋆)

L(y|θ(s))π(θ(s))

gθ[θ(s)|θ⋆]

gθ[θ⋆|θ(s)]

u ∼ U(0, 1)

θ(s+1) = {
θ⋆ if u < r

θ(s) if otherwise
.
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METROPOLIS-HASTINGS ALGORITHM

Suppose our target distribution is , a bivariate distribution for

random variables  and .

For example,  could be the joint posterior distribution for  and 

.

Two options:

Define one joint proposal density  for  and  if

possible; or

Define two proposal densities, one for  and the other for . That is,
 and .

First option follows directly from the main algorithm and often works very
well when possible. Second option needs a little modification.

p0(u, v)

U V

p0(u, v) U

V

gu,v[u⋆, v⋆|u(s), v(s)] U V

U V

gu[u⋆|u(s), v(s)] gu[v⋆|u(s), v(s)]
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METROPOLIS-HASTINGS ALGORITHM

1. Update : first, sample . Then,

Compute the acceptance ratio

Sample . Set  to  if , or set  to 

otherwise.

2. Update : first sample . Then,

Compute the acceptance ratio

Sample . Set  to  if , or set  to 

otherwise.

U u⋆ ∼ gu[u⋆|u(s), v(s)]

r = × .
p0(u⋆, v(s))

p0(u(s), v(s))

gu[u(s)|u⋆, v(s)]

gu[u⋆|u(s), v(s)]

w ∼ U(0, 1) u(s+1) u⋆ w < r u(s+1) u⋆

V v⋆ ∼ gv[v⋆|u(s+1), v(s)]

r = × .
p0(u(s+1), v⋆)

p0(u(s+1), v(s))

gv[v(s)|u(s+1), v⋆]

gv[v⋆|u(s+1), v(s)]

w ∼ U(0, 1) v(s+1) v⋆ w < r v(s+1) v⋆
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METROPOLIS-HASTINGS ALGORITHM

The acceptance ratio looks like what we had before except with an
additional factor.

That factor is the ratio of the probability of generating the current value
from the proposed to the probability of generating the proposed value
from the current (ratio is equal to one for symmetric proposal -- see
homework!).

Also, it is often the case that full conditionals are available for some
parameters but not all.

Very useful trick is to combine Gibbs and Metropolis. We may get to that
very briefly next time if we have time.
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