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ANNOUNCEMENTS

Reminder: let the instructor know if you plan to request a letter grade.

OUTLINE

Bayesian model selection and averaging

Recap

Model selection and averaging for linear regression models

Example

Metropolis algorithm

Introduction and intuition

Algorithm

Illustration
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BAYESIAN MODEL SELECTION AND

MODEL AVERAGING
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RECAP

General setting:

1. Define a list of models. That is, let  be the "finite" set of different
possible models.

2. Each model  is in , including the "true" model. Also, let 

represent the parameters in model .

3. Put a prior over the set . Let , for all . Most

common choice is the uniform prior, that is, , for all ,

where  is the total number of models in .

4. Put a prior on the parameters in each model, that is, each .

5. Compute marginal posterior probabilities  for each model.

Γ

γ Γ θγ

γ

Γ Πγ = Pr[γ] γ ∈ Γ

Πγ = 1
#Γ

γ ∈ Γ

#Γ Γ

π(θγ)

Pr[γ|Y ]
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RECAP

For each model , need to compute .

Let  denote the marginal likelihood of the data under model ,then

If we assume a uniform prior on , that is, , for all , then

γ ∈ Γ Pr[γ|Y ]

Lγ(Y ) γ

Π̂γ = Pr[γ|Y ] =

= .

Lγ(Y )Πγ

∑γ⋆∈Γ Lγ⋆(Y )Πγ⋆

Πγ ⋅ [∫
Θγ

Lγ(Y |θγ) ⋅ π(θγ)dθγ]

∑
γ⋆∈Γ Lγ⋆(Y )Πγ⋆

Γ Πγ = 1
#Γ

γ ∈ Γ

Π̂γ =

= .

Lγ(Y )

∑
γ⋆∈Γ Lγ⋆(Y )

[∫Θγ
Lγ(Y |θγ) ⋅ π(θγ)dθγ]

∑γ⋆∈Γ Lγ⋆(Y )
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RECAP

How should we choose the Bayes optimal model?

If loss function is

that is,

1. Loss equals zero if the correct model is chosen; and

2. Loss equals one if incorrect model is chosen.

Then, selecting the model with the largest posterior probability minimizes
the corresponding Bayes risk.

If goal is prediction, then

which is known as Bayesian model averaging (BMA).

L(γ̂, γ) = 1(γ̂ ≠ γ),

p(yn+1|Y = (y1, … , yn)) = ∑
γ∈Γ

Π̂γ ⋅ p(yn+1|Y , γ),
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BACK TO BAYESIAN LINEAR REGRESSION

So what does this mean specifically in the context of linear regression?

First, recall that for model , the posterior probability that the model is

the right model is

Practical issues

We need to calculate marginal likelihoods for ALL models in .

In general for, we cannot calculate the marginal likelihoods unless
we have a proper or conjugate priors.

For linear regression, that would mean looking to priors like Zellner's
g-prior, the horseshoe prior you were introduced to in the lab, and
so on.

γ

Π̂γ = .
ΠγLγ(Y )

∑γ⋆∈Γ Πγ⋆Lγ⋆(Y )

Γ
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BAYESIAN VARIABLE SELECTION

To explore Bayesian variable selection, rewrite each model  as

 represents the set of predictors we want to throw into our model.

Using the notation as before, each , so

that the cardinality of  is , that is, the number of models in .

That is,

 means the 'th predictor is included in the model, but 

means it is not;

 is the matrix of predictors with ;

 is the corresponding vector of predictors with .

Set , so that  is the number of predictors included in

model , then  is  and  is .

γ ∈ Γ

Y ∼ Nn(Xγβγ, σ
2In×n).

γ

γ = (γ0, γ1, … , γp−1) ∈ {0, 1}p

Γ 2p Γ

γj = 1 j γj = 0

Xγ γj = 1

βγ γj = 1

pγ = ∑
p

j=1 γj pγ

γ Xγ n × pγ βγ pγ × 1
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BAYESIAN VARIABLE SELECTION

Recall that we can also write each model as

As an example, suppose we had data with 6 predictors including the
intercept, so that each , and 

.

Then for model with , 

with .

Whereas for model with , 

with .

Yi = βT
γ xiγ + ϵi;     ϵi

iid
∼ N (0,σ2).

xi = (1,xi1,xi2,xi3,xi4,xi5)

β = (β0,β1,β2,β3,β4,β5)

γ = (1, 1, 0, 0, 0, 0) Yi = βT
γ xiγ + ϵi

⟹ Yi = β0 + β1xi1 + ϵi;     ϵi
iid
∼ N (0,σ2),

pγ = 2

γ = (1, 0, 0, 1, 1, 0) Yi = βT
γ xiγ + ϵi

⟹ Yi = β0 + β3xi3 + β4xi4 + ϵi;     ϵi
iid
∼ N (0,σ2),

pγ = 3
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BAYESIAN VARIABLE SELECTION

The outline for variable selection would be as follows:

1. Write down likelihood under model . That is,

2. Define a prior for , . For example, (i) uniform over all 

possible models, or even (ii) beta prior (since each ).

3. Put a prior on the parameters in each model. Using the g-prior, we
have

γ

p(y|X, γ, βγ, σ2) ∝ (σ2)−  exp{− (y − Xγβγ)T (y − Xγβγ)}
n

2
1

2σ2

γ Πγ = Pr[γ] 2p

γj ∈ {0, 1}

π(βγ|σ2) = Np (β0γ = 0, Σ0γ = gσ2[XT
γ Xγ]

−1
)

π(σ2) = IG( , )
ν0

2

ν0σ2
0

2
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BAYESIAN VARIABLE SELECTION

With those pieces, the conditional posteriors are straightforward.

We can then compute marginal posterior probabilities  for each

model and select model with the highest posterior probability.

We can also compute posterior , the posterior probability of

including the 'the predictor, often called marginal inclusion probability

(MIP), allowing for uncertainty in the other predictors.

Also straightforward to do model averaging once we have all posterior
samples.

The Hoff book works through one example and you can find the Gibbs
sampler for doing inference there. I strongly recommend you go through
it carefully!

In class however, let's focus on using R packages for doing the same.

Pr[γ|Y ]

Pr[γj|Y ]

j
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EXAMPLE

Health plans use many tools to try to control the cost of prescription
medicines.

For older drugs, generic substitutes that are the equivalent to name-brand
drugs are available at considerable savings.

Another tool that may lower costs is restricting drugs that the physician
may prescribe.

For example if three similar drugs for treating the same condition are
available, a health plan may require the physician to prescribe only one
of them, allowing the plan to negotiate discounts based on a higher
volume of sales.

We have data from 29 health plans can be used to explore the
effectiveness of these two strategies in controlling drug costs.

The response is COST, the average cost of the prescriptions to the plan
per day (in dollars).
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EXAMPLE

Potential explanatory variables are:

RXPM: Average number of prescriptions per member per year

GS: Percent generic substitute used by the plan

RI: Restrictiveness Index, from 0 (no restrictions) to 100 (total
restrictions on the physician)

COPAY: Average member copay on prescriptions

AGE: Average member age

F: percent female members

MM: Member months, a measure of the size of the plan

ID: an identifier for the name of the plan

Since we do not have so many data points, let's use Bayesian model
selection and model averaging to explore the relationship of GS and RI
to COST, adjusting for the other variables.

The data is in the file costs.txt on Sakai.
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IN-CLASS ANALYSIS: MOVE TO THE

R SCRIPT HERE.
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https://sta-602l-s20.github.io/Course-Website/slides/lec-slides/BayesianModelSelection.R


METROPOLIS ALGORITHM
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INTRODUCTION

So far in this course, inference has been made "relatively" easy with
conjugate and semi-conjugate priors.

As we have seen, under conjugate or semi-conjugate priors, posteriors
can be approximated with the Monte Carlo method or Gibbs sampler.

However, sometimes a conjugate prior is unavailable or undesirable!

In such cases, the full conditional distributions of parameters often have
no standard form, and Gibbs sampling cannot be easily used.

So what can we do?

Metropolis and Metropolis-Hastings algorithms provide a generic method
of approximating the posterior distribution corresponding to any
combination of prior and data model.
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INTRODUCTION

As a refresher, suppose  and suppose we specify a prior 

on .

Then as usual, we are interested in

As we already know, the challenge is that it is often difficult to compute 
.

Using the Monte Carlo method or Gibbs sampler, we have seen that we
don't need to know . As long as we have conjugate and semi-

conjugate priors, we can generate samples directly from .

So again, the question is, what happens if we cannot sample directly
from ?

Y ∼ π(y|θ) π(θ)

θ

π(θ|y) = .
π(θ)L(y; θ)

L(y)

L(y)

L(y)

π(θ|y)

π(θ|y)
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MOTIVATING EXAMPLE

To motivate our discussions on the Metropolis algorithm, let's explore a
simple example (somewhat different from what we have seen so far).

Suppose we wish to sample from the following density

This is a mixture of two normal densities, one with mode near 0 and the

other with mode near 3. Finite mixtures models remains the most likely
topic we will cover next Friday.

Anyway, let's use this density to explore the main ideas behind the
Metropolis sampler.

By the way, as you will see, we actually don't need to know the
normalizing constant for Metropolis sampling but for this example, we
will find it in class for practice.

π(θ|y) ∝ exp
− θ2

+ exp
− (θ−3)2

1

2
1

2

1

2
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MOTIVATING EXAMPLE

Let's take a look at the (normalized) density:

There are other ways of sampling from this density, but let's focus
specifically on the Metropolis algorithm here.
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METROPOLIS ALGORITHM

From a sampling perspective, we need to have a large group of values, 
 from  whose empirical distribution approximates 

.

That means that for any any two values  and , we want

Basically, we want to make sure that if  and  are in , the ratio

of the number of the  values equal to them properly

approximates .

How might we construct a group like this?

θ(1), … , θ(S) π(θ|y)

π(θ|y)

θa θb

÷ = × = ≈
#θ(s) = a

S

#θ(s) = b

S

#θ(s) = a

S

S

#θ(s) = b

#θ(s) = a

#θ(s) = b

π(θa|y)

π(θb|y)

θa θb π(θ|y)

θ(1), … , θ(S)

π(θa|y)

π(θb|y)
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METROPOLIS ALGORITHM

Suppose we have a working group  at iteration , and need
to add a new value .

Consider a candidate value  (we will get to how to generate the

candidate value in a minute) that is close to . Should we set 

 or not?

Well, we should probably compute  and see if .

Equivalently, look at .

By the way, notice that

which does not depend on the marginal likelihood we don't know!

θ(1), … , θ(s) s

θ(s+1)

θ⋆

θ(s)

θ(s+1) = θ⋆

π(θ⋆|y) π(θ⋆|y) > π(θ(s)|y)

r =
π(θ⋆|y)

π(θ(s)|y)

r = = ÷

= × = ,

π(θ⋆|y)

π(θ(s)|y)

L(y|θ⋆)π(θ⋆)

L(y)

L(y|θ(s))π(θ(s))

L(y)

L(y|θ⋆)π(θ⋆)

L(y)

L(y)

L(y|θ(s))π(θ(s))

L(y|θ⋆)π(θ⋆)

L(y|θ(s))π(θ(s))
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METROPOLIS ALGORITHM

If 

Intuition:  is already a part of the density we desire and the
density at  is even higher than the density at .

Action: set 

If ,

Intuition: relative frequency of values on our group 

equal to  should be . For every , include only a

fraction of an instance of .

Action: set  with probability  and  with
probability .

r > 1

θ(s)

θ⋆ θ(s)

θ(s+1) = θ⋆

r < 1

θ(1), … , θ(s)

θ⋆ ≈ r =
π(θ⋆|y)

π(θ(s)|y)
θ(s)

θ⋆

θ(s+1) = θ⋆ r θ(s+1) = θ(s)

1 − r
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METROPOLIS ALGORITHM

This is the basic intuition behind the Metropolis algorithm.

Where should the proposed value  come from?

Sample  close to the current value  using a symmetric proposal
distribution .  is actually a "family of proposal distributions",

indexed by the specific value of .

Here, symmetric means that .

The symmetric proposal is usually very simple with density concentrated
near , for example,  or .

After obtaining , either add it or add a copy of  to our current set of
values, depending on the value of .

θ⋆

θ⋆ θ(s)

g[θ⋆|θ(s)] g

θ(s)

g[θ⋆|θ(s)] = g[θ(s)|θ⋆]

θ(s) N (θ⋆; θ(s), δ2) Unif(θ⋆; θ(s) − δ, θ(s) + δ)

θ⋆ θ(s)

r
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METROPOLIS ALGORITHM

The algorithm proceeds as follows:

1. Given , generate a candidate value .

2. Compute the acceptance ratio

3. Set

which can be accomplished by sampling  independently

and setting

θ(1), … , θ(s) θ⋆ ∼ g[θ⋆|θ(s)]

r = = ,
π(θ⋆|y)

π(θ(s)|y)

L(y|θ⋆)π(θ⋆)

L(y|θ(s))π(θ(s))

θ(s+1) = {
θ⋆ with probability min(r, 1)

θ(s) with probability 1 − min(r, 1)

u ∼ U(0, 1)

θ(s+1) = {
θ⋆ if u < r

θ(s) if otherwise
.
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METROPOLIS ALGORITHM

Once we obtain the samples, then we are back to using Monte Carlo
approximations for quantities of interest.

That is, we can again approximate posterior means, quantiles, and other
quantities of interest using the empirical distribution of our sampled
values.

Some notes:

The Metropolis chain ALWAYS moves to the proposed  at iteration 
 if  has higher target density than the current .

Sometimes, it also moves to a  value with lower density in
proportion to the density value itself.

This leads to a random, Markov process than naturally explores the
space according to the probability defined by , and hence

generates a sequence that, while dependent, eventually represents
draws from .

θ⋆

s + 1 θ⋆ θ(s)

θ⋆

π(θ|y)

π(θ|y)
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METROPOLIS ALGORITHM: CONVERGENCE

We will not cover the convergence theory behind Metropolis chains in
detail, but below are a few notes for those interested:

The Markov process generated under this condition is ergodic and
has a limiting distribution.

Here, think of ergodicity as meaning that the chain can move
anywhere at each step, which is ensured, for example, if 

 everywhere!

By construction, it turns out that the Metropolis chains are reversible,
so that convergence to  is assured.

Think of reversibility as being equivalent to symmetry of the joint
density of two consecutive  and  in the stationary process,
which we do have by using a symmetric proposal distribution.

If you want to learn more about convergence of MCMC chains, consider
taking one of the courses on stochastic processes, or Markov chain
theory.

g[θ⋆|θ(s)] > 0

π(θ|y)

θ(s) θ(s+1)
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METROPOLIS ALGORITHM: TUNING

Correlation between samples can be adjusted by selecting optimal  (i.e.,
spread of the distribution) in the proposal distribution

Decreasing correlation increases the effective sample size, increasing
rate of convergence, and improving the Monte Carlo approximation to
the posterior.

However,

 too small leads to  for most proposed values, a high
acceptance rate, but very small moves, leading to highly correlated
chain.

 too large can get "stuck" at the posterior mode(s) because  can
get very far away from the mode, leading to a very low acceptance
rate and again high correlation in the Markov chain.

Thus, good to implement several short runs of the algorithm varying 
and settle on one that yields acceptance rate in the range of 25-50%.

Burn-in is even more important here!

δ

δ r ≈ 1

δ θ⋆

δ
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METROPOLIS IN ACTION

Back to our example with

π(θ|y) ∝ exp
− θ2

+ exp
− (θ−3)2

1

2
1

2

1

2
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IN-CLASS ANALYSIS: MOVE TO THE

R SCRIPT HERE.
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https://sta-602l-s20.github.io/Course-Website/slides/lec-slides/Metropolis-I.R

