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LINEAR REGRESSION MODEL RECAP

Model:

where  is the identity matrix and

Priors:

Y ∼ Nn(Xβ, σ2In×n).

I

Y =

⎡
⎢ ⎢ ⎢ ⎢
⎣

Y1

Y2

⋮

Yn

⎤
⎥ ⎥ ⎥ ⎥
⎦

X =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

1 x11 x12 … x1(p−1)

1 x21 x22 … x2(p−1)

⋮ ⋮ ⋮ ⋮ ⋮

1 xn1 xn2 … xn(p−1)

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

β =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

β0

β1

β2

⋮

βp−1

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

ϵ =

⎡
⎢ ⎢ ⎢ ⎢
⎣

ϵ1

ϵ2

⋮

ϵn

⎤
⎥ ⎥ ⎥ ⎥
⎦

π(β) = Np(β0, Σ0)

π(σ2) = IG( , ) .
ν0

2

ν0σ2
0

2
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BAYESIAN ESTIMATION RECAP

With those priors, we have

where

plus

where

π(β|y, X, σ2) ≡  Np(μn, Σn),

Σn = [Σ−1
0 + XT X]

−1

μn = Σn [Σ−1
0 β0 + XT y] .

1

σ2

1

σ2

π(σ2|y, X, β) ≡ IG( , ) ,
νn

2

νnσ2
n

2

νn = ν0 + n;     σ2
n = [ν0σ2

0 + (y − Xβ)T (y − Xβ)] = [ν0σ2
0 + SSR(β)] .

1

νn

1

νn
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WEAKLY INFORMATIVE PRIORS

Specifying hyperparameters that represent actual prior information can
be challenging, especially for .

It can therefore be desirable use weakly informative priors when
possible. The Hoff book discusses a few different options, one of which is
the Zellner's g-prior (there are other options but we will not cover them in
class due to time restrictions).

Note that we can also use Jefferys prior here to be completely non-
informative.

Zellner's g-prior is

for some positive value , which is often commonly set to the sample size 

.

β

π(β|σ2) = Np (β0 = 0, Σ0 = gσ
2[XT X]

−1
)

π(σ
2) = IG( , )

ν0

2

ν0σ2
0

2

g

n
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WEAKLY INFORMATIVE PRIORS

Note that the g-prior uses a part of the data. As I have mentioned
before, using your data to construct your prior is usually a no-no!

However, the g-prior actually does not use the information in , the

response variable of interest, just the information in .

Observe that the prior specification actually looks like the conjugate
prior we first used for the univariate normal model, that is, with

Turns out that we also have conjugacy with the g-prior, so that we don't
actually need Gibbs sampling to obtain posterior samples. 

takes the same form as before but now we also have .

y

X

σ
2  ∼ IG( , )

μ|σ2 ∼ N (μ0, ) .

ν0

2

ν0σ
2
0

2

σ2

κ0

π(β|y, X, σ2)

π(σ2|y, X)
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WEAKLY INFORMATIVE PRIORS

With the g-prior, we have

where

where . See the Hoff book for

the proof, and see homework for illustration.

π(β|y, X, σ2) = Np(μn, Σn)

π(σ2|y, X) = IG( , )
νn

2

νnσ2
n

2

Σn = [Σ−1
0 + XT X]

−1

= [ XT X + XT X]
−1

= σ2[XT X]
−1

μn = Σn [Σ−1
0 β0 + XT y] = σ

2[XT X]
−1

[ XT y]

= [XT X]
−1

XT y = β̂ols

νn = ν0 + n;        σ2
n = [ν0σ2

0 + SSR(g)] ,

1

σ2

1

gσ2

1

σ2

g

g + 1

1

σ2

g

g + 1

1

σ2

g

g + 1

g

g + 1

1

νn

SSR(g) = yT (I − X(XT X)
−1

XT )y
g

g+1

8 / 27



BAYESIAN MODEL SELECTION AND

AVERAGING
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BAYESIAN HYPOTHESIS TESTING/MODEL

SELECTION

How can we do model selection in a Bayesian framework? First let's
quickly discuss Bayesian hypothesis testing for a simple model.

Suppose we have univariate data  and wish to test 

 under the Bayesian paradigm.

Informal approach:

1. Put a prior on , .

2. Compute posterior  for updated

parameters  and .

3. Compute a 95% CI based on the posterior.

4. Reject  if interval does not contain zero.

yi
iid
∼ N (μ, 1)

H0 : μ = 0;   vs.H1 : μ ≠ 0

μ π(μ) = N (μ0,σ2
0)

μ|Y = (y1, … , yn) ∼ N (μn,σ2
n)

μn σ2
n

H0
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BAYESIAN HYPOTHESIS TESTING

Formal approach:

1. Put a prior on the actual hypotheses/models, that is, on 
 and .

For example, set  and , if apriori, we

believe the two hypotheses are equally likely.

2. Put a prior on the parameters in each model.

In our simple normal model, the only unknown parameter is , so for

example, our prior can once again be .

3. Compute marginal posterior probabilities for each hypothesis, that is,
 and .

4. Conclude based on the magnitude of  relative to .

π(H0) = Pr[H0] π(H1) = Pr[H1]

Pr[H0] = 0.5 Pr[H1] = 0.5

μ

π(μ) = N (μ0, σ2
0)

Pr[H0|Y ] Pr[H1|Y ]

Pr[H1|Y ] Pr[H0|Y ]
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BAYESIAN HYPOTHESIS TESTING

Using Bayes theorem,

where  and  are the marginal likelihoods for the data

under the null and alternative hypotheses respectively.

If for example we set  and  apriori, then

The ratio  is known as the Bayes factor in favor of , and often

written as . Similarly, we can compute .

Pr[H1|Y ] = ,
L[Y |H1] Pr[H1]

L[Y |H0] Pr[H0] + L[Y |H1] Pr[H1]

L[Y |H0] L[Y |H1]

Pr[H0] = 0.5 Pr[H1] = 0.5

Pr[H1|Y ] =

= = .

0.5L[Y |H1]

0.5L[Y |H0] + 0.5L[Y |H1]

L[Y |H1]

L[Y |H0] + L[Y |H1]

1

+ 1
L[Y |H0]

L[Y |H1]

L[Y |H0]

L[Y |H1]
H0

BF 01 BF 10
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BAYES FACTORS

Bayes factor: is a ratio of marginal likelihoods and it provides a weight of
evidence in the data in favor of one model over another.

It is often used as an alternative to the frequentist p-value.

Rule of thumb:  is strong evidence for ;  is
decisive evidence for .

Notice that for our example,

the higher the value of , that is, the weight of evidence in the data
in favor of , the lower the marginal posterior probability that  is
true.

That is, here, as , .

BF 01 > 10 H0 BF 01 > 100
H0

Pr[H1|Y ] = =
1

+ 1
L[Y |H0]

L[Y |H1]

1

BF 01 + 1

BF 01

H0 H0

BF 01 ↑ Pr[H1|Y ] ↓
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BAYES FACTORS

Let's look at another way to think of Bayes factors. First, recall that

so that

Therefore, the Bayes factor can be thought of as the factor by which our
prior odds change (towards the posterior odds) in the light of the data.

In linear regression, BIC approximates the  comparing a model to the
null model.

Pr[H1|Y ] = ,
L[Y |H1] Pr[H1]

L[Y |H0] Pr[H0] + L[Y |H1] Pr[H1]

= ÷

= ×

∴


posterior odds

=


prior odds

×


Bayes factor BF 01

Pr[H0|Y ]

Pr[H1|Y ]

L[Y |H0] Pr[H0]

L[Y |H0] Pr[H0] + L[Y |H1] Pr[H1]

L[Y |H1] Pr[H1]

L[Y |H0] Pr[H0] + L[Y |H1] Pr[H1]

L[Y |H0] Pr[H0]

L[Y |H0] Pr[H0] + L[Y |H1] Pr[H1]

L[Y |H0] Pr[H0] + L[Y |H1] Pr[H1]

L[Y |H1] Pr[H1]

Pr[H0|Y ]

Pr[H1|Y ]

Pr[H0]

Pr[H1]

L[Y |H0]

L[Y |H1]

BF
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BAYES FACTORS

While Bayes factors can be appealing, calculating them can be
computationally demanding!

Why have we been "mildly obsessed" with MCMC sampling? To avoid
computing any marginal likelihoods! Well, guess what? Bayes factors
are ratios of marginal likelihoods, taking us back to the problem we
always try to avoid.

Of course this isn't all "doom and gloom", there are various ways (once

again!) of getting around computing those likelihoods analytically.
Unfortunately, we will not have time to cover them in this course.

As a teaser, one approach is to flip the relationship on the previous slide:

which is easy to compute as long as we can use posterior samples to
compute/approximate the posterior odds.


Bayes factor BF 01

=


posterior odds

×


prior odds

,
L[Y |H0]

L[Y |H1]

Pr[H0|Y ]

Pr[H1|Y ]

Pr[H1]

Pr[H0]
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BAYESIAN MODEL SELECTION

Now that we have a general sense of how Bayesian hypothesis works,
let's get back to model selection, and use some of the same ideas.

General setting:

1. Define a list of models. That is, let  be the "finite" set of different
possible models.

2. Each model  is in , including the "true" model. Also, let 

represent the parameters in model .

3. Put a prior over the set . Let , for all . Most

common choice is the uniform prior, that is, , for all ,

where  is the total number of models in .

4. Put a prior on the parameters in each model, that is, each .

5. Compute marginal posterior probabilities  for each model.

Γ

γ Γ θγ

γ

Γ Πγ = Pr[γ] γ ∈ Γ

Πγ = 1
#Γ

γ ∈ Γ

#Γ Γ

π(θγ)

Pr[γ|Y ]
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BAYESIAN MODEL SELECTION

For each model , we need to compute .

Let  denote the marginal likelihood of the data under model , that

is,  or . As before,

If we assume a uniform prior on , that is, , for all , then

γ ∈ Γ Pr[γ|Y ]

Lγ(Y ) γ

L[Y |γ] L[Y ; γ]

Π̂γ = Pr[γ|Y ] =

= .

Lγ(Y )Πγ

∑γ⋆∈Γ Lγ⋆(Y )Πγ⋆

Πγ ⋅ [∫
Θγ

Lγ(Y |θγ) ⋅ π(θγ)dθγ]

∑
γ⋆∈Γ Lγ⋆(Y )Πγ⋆

Γ Πγ = 1
#Γ

γ ∈ Γ

Π̂γ =

= .

Lγ(Y )

∑
γ⋆∈Γ Lγ⋆(Y )

[∫Θγ
Lγ(Y |θγ) ⋅ π(θγ)dθγ]

∑γ⋆∈Γ Lγ⋆(Y )
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BAYESIAN MODEL SELECTION

How should we choose the Bayes optimal model?

First specify a loss function. The most natural is

that is,

1. Loss equals zero if the correct model is chosen; and

2. Loss equals one if incorrect model is chosen.

Next, select  to minimize Bayes risk. Here, Bayes risk (expected loss

over posterior) is

To minimize , choose  such that  is the largest! That is, select the

model with the largest posterior probability.

L(γ̂, γ) = 1(γ̂ ≠ γ),

γ̂

R(γ̂) = ∑
γ∈Γ

1(γ̂ ≠ γ) ⋅ Π̂γ = 0 ⋅ Π̂γtrue + ∑
γ≠γtrue

Π̂γ = ∑
γ≠γ̂

Π̂γ = 1 − Π̂γ̂

R(γ̂) γ̂ Π̂γ̂
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INFERENCE VS PREDICTION

What if the goal is prediction? Then we should care more about
predictive accuracy, rather than selecting specific variables.

For predictions, we care about the predictive distribution, that is

which is just averaging out the predictions from each model, over all
possible models in , with the posterior probability of each model, and
this is known as Bayesian model averaging (BMA).

p(yn+1|Y = (y1, … , yn)) = ∫ ∫ p(yn+1|γ, θγ) ⋅ π(γ, θγ|Y )dθγdγ

= ∫ ∫ p(yn+1|γ, θγ) ⋅ π(θγ|Y , γ) ⋅ Pr[γ|Y ]dθγdγ

= ∑
γ∈Γ

∫ p(yn+1|γ, θγ) ⋅ π(θγ|Y , γ) ⋅ Π̂γdθγ

= ∑
γ∈Γ

Π̂γ ⋅ ∫ p(yn+1|γ, θγ) ⋅ π(θγ|Y , γ)dθγ

= ∑
γ∈Γ

Π̂γ ⋅ p(yn+1|Y , γ),

Γ
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BACK TO BAYESIAN LINEAR REGRESSION

So what does this mean specifically in the context of linear regression?

First, recall that for model , the posterior probability that the model is

the right model is

Practical issues

We need to calculate marginal likelihoods for ALL models in .

In general for, we cannot calculate the marginal likelihoods unless
we have a proper or conjugate priors.

For linear regression, that would mean looking to priors like Zellner's
g-prior, the horseshoe prior you were introduced to in the lab, and
so on.

γ

Π̂γ = .
ΠγLγ(Y )

∑γ⋆∈Γ Πγ⋆Lγ⋆(Y )

Γ
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BAYESIAN VARIABLE SELECTION

To explore Bayesian variable selection, rewrite each model  as

 represents the set of predictors we want to throw into our model.

Using the notation as before, each , so

that the cardinality of  is , that is, the number of models in .

That is,

 means the 'th predictor is included in the model, but 

means it is not;

 is the matrix of predictors with ;

 is the corresponding vector of predictors with .

Set , so that  is the number of predictors included in

model , then  is  and  is .

γ ∈ Γ

Y ∼ Nn(Xγβγ, σ
2In×n).

γ

γ = (γ0, γ1, … , γp−1) ∈ {0, 1}p

Γ 2p Γ

γj = 1 j γj = 0

Xγ γj = 1

βγ γj = 1

pγ = ∑
p

j=1 γj pγ

γ Xγ n × pγ βγ pγ × 1
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BAYESIAN VARIABLE SELECTION

Recall that we can also write each model as

As an example, suppose we had data with 6 predictors including the
intercept, so that each , and 

.

Then for model with , 

with .

Whereas for model with , 

with .

Yi = βT
γ xiγ + ϵi;     ϵi

iid
∼ N (0,σ2).

xi = (1,xi1,xi2,xi3,xi4,xi5)

β = (β0,β1,β2,β3,β4,β5)

γ = (1, 1, 0, 0, 0, 0) Yi = βT
γ xiγ + ϵi

⟹ Yi = β0 + β1xi1 + ϵi;     ϵi
iid
∼ N (0,σ2),

pγ = 2

γ = (1, 0, 0, 1, 1, 0) Yi = βT
γ xiγ + ϵi

⟹ Yi = β0 + β3xi3 + β4xi4 + ϵi;     ϵi
iid
∼ N (0,σ2),

pγ = 3
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BAYESIAN VARIABLE SELECTION

The outline for variable selection would be as follows:

1. Write down likelihood under model . That is,

2. Define a prior for , . For example, (i) uniform over all 

possible models, or even (ii) beta prior (since each ).

3. Put a prior on the parameters in each model. Using the g-prior, we
have

γ

p(y|X, γ, βγ, σ2) ∝ (σ2)−  exp{− (y − Xγβγ)T (y − Xγβγ)}
n

2
1

2σ2

γ Πγ = Pr[γ] 2p

γj ∈ {0, 1}

π(βγ|σ2) = Np (β0γ = 0, Σ0γ = gσ2[XT
γ Xγ]

−1
)

π(σ2) = IG( , )
ν0

2

ν0σ2
0

2
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BAYESIAN VARIABLE SELECTION

With those pieces, the conditional posteriors are straightforward.

We can then compute marginal posterior probabilities  for each

model and select model with the highest posterior probability.

We can also compute posterior , the posterior probability of

including the 'the predictor, often called marginal inclusion probability

(MIP), allowing for uncertainty in the other predictors.

Also straightforward to do model averaging once we all have posterior
samples.

The Hoff book works through one example and you can find the Gibbs
sampler for doing inference there. I strongly recommend you go through
it carefully!

In class however, let's focus on using R packages for doing the same.

Pr[γ|Y ]

Pr[γj|Y ]

j
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EXAMPLE

Health plans use many tools to try to control the cost of prescription
medicines.

For older drugs, generic substitutes that are the equivalent to name-brand
drugs are available at considerable savings.

Another tool that may lower costs is restricting drugs that the physician
may prescribe.

For example if three similar drugs for treating the same condition are
available, a health plan may require the physician to prescribe only one
of them, allowing the plan to negotiate discounts based on a higher
volume of sales.

We have data from 29 health plans can be used to explore the
effectiveness of these two strategies in controlling drug costs.

The response is COST, the average cost of the prescriptions to the plan
per day (in dollars).
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EXAMPLE

Potential explanatory variables are:

RXPM: Average number of prescriptions per member per year

GS: Percent generic substitute used by the plan

RI: Restrictiveness Index, from 0 (no restrictions) to 100 (total
restrictions on the physician)

COPAY: Average member copay on prescriptions

AGE: Average member age

F: percent female members

MM: Member months, a measure of the size of the plan

ID: an identifier for the name of the plan

Since we do not have so many data points, let's use Bayesian model
selection and model averaging to explore the relationship of GS and RI
to COST, adjusting for the other variables.

The data is in the file costs.txt on Sakai.
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IN-CLASS ANALYSIS: MOVE TO THE

R SCRIPT HERE.
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https://sta-602l-s20.github.io/Course-Website/slides/lec-slides/BayesianModelSelection.R

