
INTRODUCTION TO REGRESSION

MODELS

DR. OLANREWAJU MICHAEL AKANDE

MARCH 27, 2020

1 / 40

ANNOUNCEMENTS

Expect midterm key sometime today.

OUTLINE

Wrap up for hierarchical models

Linear regression:

Motivating example

Frequentist estimation

Bayesian specification

Back to example

2 / 40

WRAP UP FOR HIERARCHICAL

MODELS

3 / 40

ELS DATA

Recall the ELS data:

4 / 40

ELS HYPOTHESES

Investigators may be interested in the following:

Differences in mean scores across schools

Differences in school-specific variances

How do we evaluate these questions in a statistical model?

5 / 40

HIERARCHICAL MODEL

Model:

Now, we need to specify hyperparameters. That should be fun!

yij|θj, σ2 ∼ N (θj, σ2
j) ; i = 1, … , nj

θj|μ, τ 2 ∼ N (μ, τ 2) ; j = 1, … , J

σ2
1 , … , σ2

J
|ν0, σ2

0 ∼ IG(,)

μ ∼ N (μ0, γ2
0)

τ 2 ∼ IG(,) .

π(ν0) ∝ e−αν0

σ2
0 ∼ Ga (a, b) .

ν0

2

ν0σ2
0

2

η0

2

η0τ 2
0

2

6 / 40

PRIOR SPECIFICATION

This exam was designed to have a national mean of 50 and standard
deviation of 10. Suppose we don't have any other information.

Then, we can specify

Are these prior distributions overly informative?

μ ∼ N (μ0 = 50, γ2
0 = 25)

τ 2 ∼ IG(= , =) .

π(ν0) ∝ e−αν0 ∝ e−ν0

σ2
0 ∼ Ga(a = 1, b =) .

η0

2

1

2

η0τ 2
0

2

100

2

1

100

7 / 40

FULL CONDITIONALS (RECAP)
π(θj| ⋯ ⋯) = N (μ⋆

j , τ ⋆
j) where

τ ⋆
j = ; μ⋆

j = τ ⋆
j [ȳ j + μ]

1

+
nj

σ2
j

1

τ 2

nj

σ2
j

1

τ 2

π(σ2
j | ⋯ ⋯) = IG

⎛

⎝
,

⎞

⎠
 where

ν⋆
j = ν0 + nj; σ

2(⋆)

j = [ν0σ2
0 +

nj

∑
i=1

(yij − θj)
2] .

ν⋆
j

2

ν⋆
j σ

2(⋆)
j

2

1

ν⋆
j

π(μ| ⋯ ⋯) = N (μn, γ2
n) where

γ2
n = ; μn = γ2

n [θ̄ + μ0]
1

+
J

τ 2

1

γ2
0

J

τ 2

1

γ2
0

8 / 40

FULL CONDITIONALS (RECAP)

π(τ 2| ⋯ ⋯) = IG(,) where

ηn = η0 + J; τ 2
n = [η0τ 2

0 +
J

∑
j=1

(θj − μ)2] .

ηn

2

ηnτ 2
n

2

1

ηn

lnπ(ν0| ⋯ ⋯) ∝ () ln() − Jln [Γ()]

 + (+ 1)(
J

∑
j=1

ln[])

 − ν0 [α +
J

∑
j=1

]

Jν0

2

ν0σ2
0

2

ν0

2

ν0

2

1

σ2
j

σ2
0

2

1

σ2
j

π(σ2
0 | ⋯ ⋯) = Ga (σ2

0 ; an, bn) where

an = a + ; bn = b +
J

∑
j=1

.
Jν0

2

ν0

2

1

σ2
j

9 / 40

SIDE NOTES

Obviously, as you have seen in the lab, we can simply use Stan (or
JAGS, BUGS) to fit these models without needing to do any of this
ourselves.

The point here (as you should already know by now) is to learn and
understand all the details, including the math!

10 / 40

GIBBS SAMPLER

#Data summaries
J <- length(unique(Y[,"school"]))
ybar <- c(by(Y[,"mathscore"],Y[,"school"],mean))
s_j_sq <- c(by(Y[,"mathscore"],Y[,"school"],var))
n <- c(table(Y[,"school"]))

#Hyperparameters for the priors
mu_0 <- 50
gamma_0_sq <- 25
eta_0 <- 1
tau_0_sq <- 100
alpha <- 1
a <- 1
b <- 1/100

#Grid values for sampling nu_0_grid
nu_0_grid<-1:5000

#Initial values for Gibbs sampler
theta <- ybar
sigma_sq <- s_j_sq
mu <- mean(theta)
tau_sq <- var(theta)
nu_0 <- 1
sigma_0_sq <- 100

11 / 40

GIBBS SAMPLER

#first set number of iterations and burn-in, then set seed
n_iter <- 10000; burn_in <- 0.3*n_iter
set.seed(1234)

#Set null matrices to save samples
SIGMA_SQ <- THETA <- matrix(nrow=n_iter, ncol=J)
OTHER_PAR <- matrix(nrow=n_iter, ncol=4)

#Now, to the Gibbs sampler
for(s in 1:(n_iter+burn_in)){

 #update the theta vector (all the theta_j's)
 tau_j_star <- 1/(n/sigma_sq + 1/tau_sq)
 mu_j_star <- tau_j_star*(ybar*n/sigma_sq + mu/tau_sq)
 theta <- rnorm(J,mu_j_star,sqrt(tau_j_star))

 #update the sigma_sq vector (all the sigma_sq_j's)
 nu_j_star <- nu_0 + n
 theta_long <- rep(theta,n)
 nu_j_star_sigma_j_sq_star <-
 nu_0*sigma_0_sq + c(by((Y[,"mathscore"] - theta_long)^2,Y[,"school"],sum))
 sigma_sq <- 1/rgamma(J,(nu_j_star/2),(nu_j_star_sigma_j_sq_star/2))
 #update mu
 gamma_n_sq <- 1/(J/tau_sq + 1/gamma_0_sq)
 mu_n <- gamma_n_sq*(J*mean(theta)/tau_sq + mu_0/gamma_0_sq)
 mu <- rnorm(1,mu_n,sqrt(gamma_n_sq))

12 / 40

GIBBS SAMPLER

 #update tau_sq
 eta_n <- eta_0 + J
 eta_n_tau_n_sq <- eta_0*tau_0_sq + sum((theta-mu)^2)
 tau_sq <- 1/rgamma(1,eta_n/2,eta_n_tau_n_sq/2)

 #update sigma_0_sq
 sigma_0_sq <- rgamma(1,(a + J*nu_0/2),(b + nu_0*sum(1/sigma_sq)/2))

 #update nu_0
 log_prob_nu_0 <- (J*nu_0_grid/2)*log(nu_0_grid*sigma_0_sq/2) -
 J*lgamma(nu_0_grid/2) +
 (nu_0_grid/2+1)*sum(log(1/sigma_sq)) -
 nu_0_grid*(alpha + sigma_0_sq*sum(1/sigma_sq)/2)
 nu_0 <- sample(nu_0_grid,1, prob = exp(log_prob_nu_0 - max(log_prob_nu_0)))
 #this last step substracts the maximum logarithm from all logs
 #it is a neat trick that throws away all results that are so negative
 #they will screw up the exponential
 #note that the sample function will renormalize the probabilities internally

 #save results only past burn-in
 if(s > burn_in){
 THETA[(s-burn_in),] <- theta
 SIGMA_SQ[(s-burn_in),] <- sigma_sq
 OTHER_PAR[(s-burn_in),] <- c(mu,tau_sq,sigma_0_sq,nu_0)
 }
}
colnames(OTHER_PAR) <- c("mu","tau_sq","sigma_0_sq","nu_0")

13 / 40

POSTERIOR INFERENCE FOR GROUP MEANS

The blue lines indicate the posterior median and a 95% for . The red

asterisks indicate the data values .

μ

ȳ j

14 / 40

POSTERIOR INFERENCE FOR GROUP

VARIANCES

Posterior summaries of .σ2

j

15 / 40

POSTERIOR INFERENCE

Shrinkage as a function of sample size.

n Sample group mean Post. est. of group mean Post. est. of overall mean
1 31 50.81355 50.49363 48.10549
2 22 46.47955 46.71544 48.10549
3 23 48.77696 48.71578 48.10549
4 19 47.31632 47.44935 48.10549
5 21 36.58286 38.04669 48.10549

n Sample group mean Post. est. of group mean Post. est. of overall mean
15 12 56.43083 54.67213 48.10549
16 23 55.49609 54.72904 48.10549
17 7 37.92714 40.86290 48.10549
18 14 50.45357 50.03007 48.10549

n Sample group mean Post. est. of group mean Post. est. of overall mean
67 4 65.01750 56.90436 48.10549
68 19 44.74684 45.13522 48.10549
69 24 51.86917 51.31079 48.10549
70 27 43.47037 43.86470 48.10549
71 22 46.70455 46.88374 48.10549
72 13 36.95000 38.55704 48.10549

16 / 40

HOW ABOUT NON-NORMAL MODELS?
Suppose we have being a count for subject in group .

For count data, it is natural to use a Poisson likelihood, that is,

where each is a group specific mean.

When there are limited data within each group, it is natural to borrow
information.

How can we accomplish this with a hierarchical model?

See homework 6 for a similar setup!

yij ∈ {0, 1, …} i j

yij ∼ Poisson(θj)

θj = E[yij]

17 / 40

LINEAR REGRESSION MODEL

18 / 40

MOTIVATING EXAMPLE

Let's consider the problem of predicting swimming times for high school
swimmers to swim 50 yards.

We have data collected on four students, each with six times taken
(every two weeks).

Suppose the coach of the team wants to use the data to recommend one
of the swimmers to compete in a swim meet in two weeks time.
Regression models sure seem like a good fit here.

In a typical regression setup, we store the predictor variables in a matrix
, so is the number of observations and is the number of

variables.

You should all know how to write down and fit linear regression models
of the most common forms, so let's only review the most important
details.

Xn×p n p

19 / 40

NORMAL REGRESSION MODEL

The model assumes the following distribution for a response variable
given multiple covariates/predictors .

or in vector form for the parameters,

where .

We can also write the model as:

That is, the model assumes is linear.

Yi
xi = (1,xi1,xi2, … ,xi(p−1))

Yi = β0 + β1xi1 + β2xi2 + … + βp−1xi(p−1) + ϵi; ϵi
iid
∼ N (0,σ2).

Yi = βTxi + ϵi; ϵi
iid
∼ N (0,σ2),

β = (β0,β1,β2, … ,βp−1)

Yi
iid
∼ N (βTxi,σ

2);

p(yi|xi) = N (βTxi,σ
2).

E[Y |x]

20 / 40

LIKELIHOOD

Given that we have , the likelihood is

From all our work with normal models, we already know it would be
convenient to specify a (multivariate) normal prior on and a gamma

prior on , so let's start there.

Two things to immediately notice:

since is a vector, it might actually be better to rewrite this kernel in

multivariate form altogether, and

when combining this likelihood with the prior kernel, we will need to
find a way to detach from .

Yi
iid
∼ N (βTxi,σ2)

p(yi, … , yn|x1, … , xp, β,σ2) =
n

∏
i=1

p(yi|xi)

=
n

∏
i=1

 exp{− (yi − βTxi)
2}

∝ (σ2)− exp{−
n

∑
i=1

(yi − βTxi)
2} .

1

√2πσ2

1

2σ2

n

2
1

2σ2

β

1/σ2

β

β xi

21 / 40

MULTIVARIATE FORM

Let

Then, we can write the model as

That is, in multivariate form, we have

Y =

⎡
⎢ ⎢ ⎢ ⎢
⎣

Y1

Y2

⋮

Yn

⎤
⎥ ⎥ ⎥ ⎥
⎦

X =

⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣

1 x11 x12 … x1(p−1)

1 x21 x22 … x2(p−1)

⋮ ⋮ ⋮ ⋮ ⋮

1 xn1 xn2 … xn(p−1)

⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦

β =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

β0

β1

β2

⋮

βp−1

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

ϵ =

⎡
⎢ ⎢ ⎢ ⎢
⎣

ϵ1

ϵ2

⋮

ϵn

⎤
⎥ ⎥ ⎥ ⎥
⎦

I =

⎡
⎢ ⎢ ⎢ ⎢
⎣

1 0 … 0
0 1 … 0

⋮ ⋮ ⋮ ⋮

0 0 … 1

⎤
⎥ ⎥ ⎥ ⎥
⎦

Y = Xβ + ϵ; ϵ ∼ Nn(0, σ2In×n).

Y ∼ Nn(Xβ, σ2In×n).

22 / 40

FREQUENTIST ESTIMATION RECAP

OLS estimate of is given by

Predictions can then be written as

The variance of the OLS estimates of all coefficients is

Finally,

β

β̂ols = (XT X)
−1

XT y.

ŷ = Xβ̂ols = X [(XT X)
−1

XT y] = [X(XT X)
−1

XT] y.

p

Var [β̂ols] = σ2(XT X)
−1

.

s2
e = .

(y − Xβ̂ols)
T (y − Xβ̂ols)

n − p

23 / 40

BAYESIAN SPECIFICATION

24 / 40

BAYESIAN SPECIFICATION

Now, our likelihood becomes

We can start with the following semi-conjugate prior for :

That is, the pdf is

Recall from our multivariate normal model that we can write this pdf as

p(y|X, β, σ2) ∝ (σ
2)− exp{− (y − Xβ)T (y − Xβ)}

∝ (σ
2)− exp{− [yT y − 2βT XT y + βT XT Xβ]} .

n

2
1

2σ2

n

2
1

2σ2

β

π(β) = Np(β0, Σ0).

π(β) = (2π)− |Σ0|− exp{− (β − μ0)T Σ−1
0 (β − μ0)} .

p

2

1

2
1

2

π(β) ∝ exp{− βT Σ−1
0 β + βT Σ−1

0 μ0} .
1

2

25 / 40

MULTIVARIATE NORMAL MODEL RECAP

To avoid doing all work from scratch, we can leverage results from the
multivariate normal model.

In particular, recall that if ,

and

Then

where

Y ∼ Np(θ, Σ)

p(y|θ, Σ) ∝ exp{− θT (Σ−1)θ + θT (Σ−1ȳ)}
1

2

π(θ) ∝ exp{− θT Λ−1
0 θ + θT Λ−1

0 μ0}
1

2

π(θ|Σ, y) ∝ exp{− θT [Λ−1
0 + Σ−1] θ + θT [Λ−1

0 μ0 + Σ−1ȳ]} ≡ Np(μn, Λn)
1

2

Λn = [Λ−1
0 + Σ−1]

−1

μn = Λn [Λ−1
0 μ0 + Σ−1ȳ] .

26 / 40

POSTERIOR COMPUTATION

For inference on , rewrite the likelihood as

Again, with the prior written as

both forms look like what we have on the previous page. It is then easy
to read off the full conditional for .

β

p(y|X, β, σ2) ∝ (σ
2)− exp{− [yT y − 2βT XT y + βT XT Xβ]}

∝ exp{− [βT XT Xβ − 2βT XT y]}

∝ exp{− βT (XT X)β + βT (XT y)} .

n

2
1

2σ2

1

2σ2

1

2

1

σ2

1

σ2

π(β) ∝ exp{− βT Σ−1
0 β + βT Σ−1

0 μ0} ,
1

2

β

27 / 40

POSTERIOR COMPUTATION

That is,

Comparing this to the prior

means

π(β|y, X, σ2) ∝ p(y|X, β, σ2) ⋅ π(β)

∝ exp{− βT [Σ−1
0 + XT X]β + βT [Σ−1

0 β0 + XT y]}

≡ Np(μn, Σn).

1

2

1

σ2

1

σ2

π(β) ∝ exp{− βT Σ−1
0 β + βT Σ−1

0 μ0} ,
1

2

Σn = [Σ−1
0 + XT X]

−1

μn = Σn [Σ−1
0 β0 + XT y] .

1

σ2

1

σ2

28 / 40

POSTERIOR COMPUTATION

Next, we move to . From previous work, we already know the inverse-
gamma distribution with be semi-conjugate.

First, recall that .

So, if we set , we have

σ2

IG(y; a, b) ≡ y−(a+1)e
−ba

Γ(a)

b

y

π(σ2) = IG(,)
ν0

2

ν0σ2
0

2

π(σ2|y, X, β) ∝ p(y|X, β, σ2) ⋅ π(σ2)

∝ (σ2)− exp {−() }

 × (σ2)
−(+1)

e

−
⎛

⎝

⎞

⎠

⎡
⎢ ⎢
⎣

⎤
⎥ ⎥
⎦

n

2
1

σ2

(y − Xβ)T (y − Xβ)

2

ν0

2

1

σ2

ν0σ2
0

2

29 / 40

POSTERIOR COMPUTATION

That is,

where

 is the sum of squares of the residuals (SSR).

π(σ
2|y, X, β) ∝ (σ

2)− exp {−() }

 × (σ
2)

−(+1)
e

−
⎛

⎝

⎞

⎠

⎡
⎢ ⎢
⎣

⎤
⎥ ⎥
⎦

∝ (σ
2)

−(+1)
e

−
⎛

⎝

⎞

⎠

⎡
⎢ ⎢
⎣

⎤
⎥ ⎥
⎦

≡ IG(,) ,

n

2
1

σ2

(y − Xβ)T (y − Xβ)

2

ν0

2

1

σ2

ν0σ
2
0

2

ν0 + n

2

1

σ2

ν0σ
2
0 + (y − Xβ)T (y − Xβ)

2

νn

2

νnσ2
n

2

νn = ν0 + n; σ2
n = [ν0σ2

0 + (y − Xβ)T (y − Xβ)] = [ν0σ2
0 + SSR(β)] .

1

νn

1

νn

(y − Xβ)T (y − Xβ)

30 / 40

SWIMMING DATA

Back to the swimming example. The data is from Exercise 9.1 in Hoff.

The data set we consider contains times (in seconds) of four high school
swimmers swimming 50 yards.

Y <- read.table("http://www2.stat.duke.edu/~pdh10/FCBS/Exercises/swim.dat")
Y

V1 V2 V3 V4 V5 V6
1 23.1 23.2 22.9 22.9 22.8 22.7
2 23.2 23.1 23.4 23.5 23.5 23.4
3 22.7 22.6 22.8 22.8 22.9 22.8
4 23.7 23.6 23.7 23.5 23.5 23.4

There are 6 times for each student, taken every two weeks. That is, each
swimmer has six measurements at weeks.

Each row corresponds to a swimmer and a higher column index indicates
a later date.

t = 2, 4, 6, 8, 10, 12

31 / 40

SWIMMING DATA

Given that we don't have enough data, we can explore hierarchical
models (just as in the lab). That way, we can borrow information across
swimmers.

For now, however, we will fit a separate linear regression model for each
swimmer, with swimming time as the response and week as the
explanatory variable (which we will mean center).

For setting priors, we have one piece of information: times for this age
group tend to be between 22 and 24 seconds.

Based on that, we can set uninformative parameters for the prior on
and for the prior on , we can set

This centers the intercept at 23 (the middle of the given range) and the
slope at 0 (so we are assuming no increase) but we choose the variance
to be a bit large to err on the side of being less informative.

σ
2

β

π(β) = N2 (β0 = (
23

0
) , Σ0 = (

5 0

0 2
)) .

32 / 40

POSTERIOR COMPUTATION

#Create X matrix, transpose Y for easy computayion
Y <- t(Y)
n_swimmers <- ncol(Y)
n <- nrow(Y)
W <- seq(2,12,length.out=n)
X <- cbind(rep(1,n),(W-mean(W)))
p <- ncol(X)

#Hyperparameters for the priors
beta_0 <- matrix(c(23,0),ncol=1)
Sigma_0 <- matrix(c(5,0,0,2),nrow=2,ncol=2)
nu_0 <- 1
sigma_0_sq <- 1/10

#Initial values for Gibbs sampler
#No need to set initial value for sigma^2, we can simply sample it first
beta <- matrix(c(23,0),nrow=p,ncol=n_swimmers)
sigma_sq <- rep(1,n_swimmers)

#first set number of iterations and burn-in, then set seed
n_iter <- 10000; burn_in <- 0.3*n_iter
set.seed(1234)

#Set null matrices to save samples
BETA <- array(0,c(n_swimmers,n_iter,p))
SIGMA_SQ <- matrix(0,n_swimmers,n_iter)

33 / 40

POSTERIOR COMPUTATION

#Now, to the Gibbs sampler
#library(mvtnorm) for multivariate normal

#first set number of iterations and burn-in, then set seed
n_iter <- 10000; burn_in <- 0.3*n_iter
set.seed(1234)

for(s in 1:(n_iter+burn_in)){
 for(j in 1:n_swimmers){

 #update the sigma_sq
 nu_n <- nu_0 + n
 SSR <- t(Y[,j] - X%*%beta[,j])%*%(Y[,j] - X%*%beta[,j])
 nu_n_sigma_n_sq <- nu_0*sigma_0_sq + SSR
 sigma_sq[j] <- 1/rgamma(1,(nu_n/2),(nu_n_sigma_n_sq/2))

 #update beta
 Sigma_n <- solve(solve(Sigma_0) + (t(X)%*%X)/sigma_sq[j])
 mu_n <- Sigma_n %*% (solve(Sigma_0)%*%beta_0 + (t(X)%*%Y[,j])/sigma_sq[j])
 beta[,j] <- rmvnorm(1,mu_n,Sigma_n)

 #save results only past burn-in
 if(s > burn_in){
 BETA[j,(s-burn_in),] <- beta[,j]
 SIGMA_SQ[j,(s-burn_in)] <- sigma_sq[j]
 }
 }
}

34 / 40

RESULTS

Before looking at the posterior samples, what are the OLS estimates for
all the parameters?

beta_ols <- matrix(0,nrow=p,ncol=n_swimmers)
for(j in 1:n_swimmers){
beta_ols[,j] <- solve(t(X)%*%X)%*%t(X)%*%Y[,j]
}
colnames(beta_ols) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames(beta_ols) <- c("beta_0","beta_1")
beta_ols

Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
beta_0 22.93333333 23.35000000 22.76667 23.56666667
beta_1 -0.04571429 0.03285714 0.02000 -0.02857143

Give an interpretation for the parameters.

Any thoughts on who the coach should recommend based on this alone?

Is this how we should be answering the question?

35 / 40

POSTERIOR INFERENCE

Posterior means are almost identical to OLS estimates.

beta_postmean <- t(apply(BETA,c(1,3),mean))
colnames(beta_postmean) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames(beta_postmean) <- c("beta_0","beta_1")
beta_postmean

Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
beta_0 22.9339174 23.34963191 22.76617785 23.56614309
beta_1 -0.0453998 0.03251415 0.01991469 -0.02854268

How about confidence intervals?

beta_postCI <- apply(BETA,c(1,3),function(x) quantile(x,probs=c(0.025,0.975)))
colnames(beta_postCI) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
beta_postCI[,,1]; beta_postCI[,,2]

Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
2.5% 22.76901 23.15949 22.60097 23.40619
97.5% 23.09937 23.53718 22.93082 23.73382

Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
2.5% -0.093131856 -0.02128792 -0.02960257 -0.07704344
97.5% 0.002288246 0.08956464 0.06789081 0.01940960

Is there any evidence that the times matter?
36 / 40

POSTERIOR INFERENCE

Is there any evidence that the times matter?

beta_pr_great_0 <- t(apply(BETA,c(1,3),function(x) mean(x > 0)))
colnames(beta_pr_great_0) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
beta_pr_great_0

Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
[1,] 1.0000 1.0000 1.0000 1.0000
[2,] 0.0287 0.9044 0.8335 0.0957

#or alternatively,
beta_pr_less_0 <- t(apply(BETA,c(1,3),function(x) mean(x < 0)))
colnames(beta_pr_less_0) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
beta_pr_less_0

Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
[1,] 0.0000 0.0000 0.0000 0.0000
[2,] 0.9713 0.0956 0.1665 0.9043

37 / 40

POSTERIOR PREDICTIVE INFERENCE

How about the posterior predictive distributions for a future time two
weeks after the last recorded observation?

x_new <- matrix(c(1,(14-mean(W))),ncol=1)
post_pred <- matrix(0,nrow=n_iter,ncol=n_swimmers)
for(j in 1:n_swimmers){
post_pred[,j] <- rnorm(n_iter,BETA[j,,]%*%x_new,sqrt(SIGMA_SQ[j,]))
}
colnames(post_pred) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")

plot(density(post_pred[,"Swimmer 1"]),col="red3",xlim=c(21.5,25),ylim=c(0,3.5),lwd=1.5
 main="Predictive Distributions",xlab="swimming times")
legend("topleft",2,c("Swimmer1","Swimmer2","Swimmer3","Swimmer4"),col=c("red3","blue3"
lines(density(post_pred[,"Swimmer 2"]),col="blue3",lwd=1.5)
lines(density(post_pred[,"Swimmer 3"]),col="orange2",lwd=1.5)
lines(density(post_pred[,"Swimmer 4"]),lwd=1.5)

38 / 40

POSTERIOR PREDICTIVE INFERENCE

39 / 40

POSTERIOR PREDICTIVE INFERENCE

How else can we answer the question on who the coach should
recommend for the swim meet in two weeks time? Few different ways.

Let be the predicted swimming time for each swimmer . We can do

the following: using draws from the predictive distributions, compute the
posterior probability that for each

swimmer , and based on this make a recommendation to the coach.

That is,

post_pred_min <- as.data.frame(apply(post_pred,1,function(x) which(x==min(x))))
colnames(post_pred_min) <- "Swimmers"
post_pred_min$Swimmers <- as.factor(post_pred_min$Swimmers)
levels(post_pred_min$Swimmers) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
table(post_pred_min$Swimmers)/n_iter

Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
0.7790 0.0078 0.1994 0.0138

Which swimmer would you recommend?

Y ⋆
j j

P(Y ⋆
j = min(Y ⋆

1 , Y ⋆
2 , Y ⋆

3 , Y ⋆
4))

j

40 / 40

