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ANNOUNCEMENTS

No HW today.

Next HW immediately after spring break on Monday, March 16.

Midterm exam next Friday, March 6.

Practice questions on Sakai later today or tomorrow.

Review session next Wednesday, March 4.
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OUTLINE

Introduction to hierarchical models

Shrinkage

Comparing two groups

BMI example

Comparing multiple groups with same variance
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MOTIVATION

Sometimes, we may have a natural grouping in our data, for example

students within schools,

patients within hospitals,

voters within counties or states,

biology data, where animals are followed within natural populations
organized geographically and, in some cases, socially.

For such grouped data, we may want to do inference across all the
groups, for example, comparison of the group means.

Ideally, we should do so in a way that takes advantage of the
relationship between observations in the same group, but we should also
look to borrow information across groups when possible.

Hierarchical modeling provides a principled way to do so.
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BAYES ESTIMATORS AND BIAS

Recall the normal model:

The MLE for the population mean  is just the sample mean .

 is unbiased for . That is, for any data , .

However, recall that in the conjugate Normal-Gamma normal for
example, the posterior expectation is a weighted average of the
prior mean and the sample mean.

That is, it is actually biased!

yi|μ,σ2 iid
∼ N (μ,σ2) .

μ ȳ

ȳ μ yi
iid
∼ N (μ,σ2) E[ȳ ] = μ
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SHRINKAGE

Usually through the weighting of the sample data and prior, the Bayes
procedure has the tendency to pull the estimate of  toward the prior

mean.

Of course, the magnitude of the pull depends on the sample size.

This "pulling" phenomenon is referred to as shrinkage.

Why would we ever want to do this? Why not just stick with the MLE?

Well, in part, because shrinkage estimators are often "more accurate" in
prediction problems -- i.e. they tend to do a better job of predicting a
future outcome or of recovering the actual parameter values. Remember
variance-bias trade off!

The fact that a biased estimator would do a better job in many prediction
problems can be proven rigorously, and is referred to as Stein's
paradox.

μ
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MODERN RELEVANCE

Stein's result implies, in particular, that the sample mean is an
inadmissible estimator of the mean of a multivariate normal distribution in

more than two dimensions -- i.e. there are other estimators that will come
closer to the true value in expectation.

In fact, these are Bayes point estimators (the posterior expectation of the
parameter  ).

Most of what we do now in high-dimensional statistics is develop biased
estimators that perform better than unbiased ones.

Examples: lasso regression, ridge regression, various kinds of
hierarchical Bayesian models, etc.

Today we will get a very basic introduction to Bayesian hierarchical
models, which provide a formal and coherent framework for constructing
shrinkage estimators.

μ
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WHY HIERARCHICAL MODELS?
Bayesian hierarchical models is a sort of catch-all phrase for a large
class of models that have several levels of conditional distributions
making up the prior.

Like simpler one-level priors, they also accomplish shrinkage. However,
they are much more flexible.

Why use them? Several reasons:

We may want to exploit more complex dependence structures.

We may have many parameters relative to the amount of data that
we have, and want to borrow information in estimating them.

We may want to shrink toward something other than a simple prior
mean/hyper-parameter.
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COMPARING TWO GROUPS

Suppose we want to do inference on mean body mass index (BMI) for
two groups (male or female).

BMI is known to often follow a normal distribution, so let's assume the
same here.

We should expect some relationship between the mean BMI for the two
groups.

We may also think the shape of the two distributions would be relatively
the same (at least as a simplifying assumption for now).

Thus, a reasonable model might be

but with some relationship between  and .

yi,male
iid
∼ N (θm,σ2) ;   i = 1, … ,nm;

yi,female
iid
∼ N (θf ,σ2) ;   i = 1, … ,nf .

θm θf
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APPLICATION

First, let's do classical inference on such data. The data we will use in the 
 package rethinking.

#install.packages(c("coda","mvtnorm","devtools","loo","dagitty"))
#library(devtools)
#devtools::install_github("rmcelreath/rethinking",ref="Experimental")
#library(rethinking)
data(Howell1)

Howell1[1:15,]

##     height   weight  age male
## 1  151.765 47.82561 63.0    1
## 2  139.700 36.48581 63.0    0
## 3  136.525 31.86484 65.0    0
## 4  156.845 53.04191 41.0    1
## 5  145.415 41.27687 51.0    0
## 6  163.830 62.99259 35.0    1
## 7  149.225 38.24348 32.0    0
## 8  168.910 55.47997 27.0    1
## 9  147.955 34.86988 19.0    0
## 10 165.100 54.48774 54.0    1
## 11 154.305 49.89512 47.0    0
## 12 151.130 41.22017 66.0    1
## 13 144.780 36.03221 73.0    0
## 14 149.900 47.70000 20.0    0
## 15 150.495 33.84930 65.3    0

R
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DATA

For now, focus on data for individuals under age 15.

htm <- Howell1$height/100
bmi <- Howell1$weight/(htm^2)
y_male <- bmi[Howell1$age<15 & Howell1$male==1]
y_female <- bmi[Howell1$age<15 & Howell1$male==0]
n_m <- length(y_male)
n_f <- length(y_female)

n_f

## [1] 84

n_m

## [1] 77

summary(y_male)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   12.07   13.87   14.63   14.84   15.53   18.22

summary(y_female)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   9.815  13.559  14.305  14.585  15.712  18.741
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CLASSICAL INFERENCE

No significant difference in group means.

t.test(y_male,y_female)

## 
##     Welch Two Sample t-test
## 
## data:  y_male and y_female
## t = 1.1204, df = 157.87, p-value = 0.2643
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1947946  0.7054729
## sample estimates:
## mean of x mean of y 
##  14.84037  14.58503
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SIMPLE WEIGHTED ESTIMATOR

One parameterization that can reflect some relationship between  and
 is

where

 and ,

 is the pooled average, and

 is half of the population difference in means.

θm
θf

yi,male
iid
∼ N (μ + δ,σ2) ;   i = 1, … ,nm;

yi,female
iid
∼ N (μ − δ,σ2) ;   i = 1, … ,nf .

θm = μ + δ θf = μ − δ

μ =
θm + θf

2

δ =
θm − θf

2
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SIMPLE WEIGHTED ESTIMATOR

Convenient prior:

, where

,

, and

.

We will set the hyper-parameters as:

,

,

.

Do these values seem reasonable to you?

π(μ, δ, σ2) = π(μ) ⋅ π(δ) ⋅ π(σ2)

π(μ) = N (μ0, γ2
0 )

π(δ) = N (δ0, τ 2
0 )

π(σ2) = IG( , )
ν0

2

ν0σ2
0

2

μ0 = 15, γ0 = 5

δ0 = 0, τ0 = 3

ν0 = 1, σ0 = 5
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SIMPLE WEIGHTED ESTIMATOR

Note that we can rewrite

as

or

as needed, so we can leverage past results for the full conditionals.

yi,male
iid
∼ N (μ + δ,σ2) ;   i = 1, … ,nm;

yi,female
iid
∼ N (μ − δ,σ2) ;   i = 1, … ,nf

(yi,male − δ)
iid
∼ N (μ,σ2) ;   i = 1, … ,nm;

(yi,female + δ)
iid
∼ N (μ,σ2) ;   i = 1, … ,nf

(yi,male − μ)
iid
∼ N (δ,σ2) ;   i = 1, … ,nm;

(−1)(yi,female − μ)
iid
∼ N (δ,σ2) ;   i = 1, … ,nf .
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FULL CONDITIONALS

For the full conditionals we will derive today, we will take advantage of
previous results from the regular univariate normal model.

Recall that if we assume

and set our priors to be

then we have

yi ∼ N (μ, σ2),   i = 1, … , n,

π(μ) = N (μ0, γ2
0) .

π(σ2) = IG( , ) ,
ν0

2

ν0σ2
0

2

π(μ, σ2|Y ) ∝ {
n

∏
i=1

p(yi|μ, σ2)} ⋅ π(μ) ⋅ π(σ2)
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FULL CONDITIONALS

We have

where

and

where

π(μ|σ2, Y ) = N (μn, γ2
n) .

γ2
n = ;         μn = γ2

n [ ȳ + μ0] ,
1

+
n

σ2

1

γ2
0

n

σ2

1

γ2
0

π(σ2|μ, Y ) = IG( , ) ,
νn

2

νnσ2
n

2

νn = ν0 + n;        σ2
n = [ν0σ2

0 +
n

∑
i=1

(yi − μ)2] .
1

νn
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FULL CONDITIONALS

With , we have

where

, and

.

π(μ) = N (μ0, γ2
0 )

μ|Y , δ, σ2 ∼ N (μn, γ2
n),    where

γ2
n =

μn = γ2
n

⎡

⎣
+

⎤

⎦
.

1

+
1

γ2
0

nm + nf

σ2

μ0

γ2
0

nm
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
(yi,male − δ) + nf

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
(yi,female + δ)

σ2

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
(yi,male − δ) =

nm

∑
i=1

(yi,male − δ)
1

nm

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
(yi,female + δ) =

nf

∑
i=1

(yi,female + δ)
1

nf

18 / 48



FULL CONDITIONALS

With , we have

where

, and

.

π(δ) = N (δ0, τ 2
0 )

δ|Y , μ, σ2 ∼ N (δn, τ 2
n ),    where

τ 2
n =

δn = τ 2
n

⎡

⎣
+

⎤

⎦
.

1

+
1

τ 2
0

nm + nf

σ2

δ0

τ 2
0

nm
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
(yi,male − μ) + (−1)nf

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
(yi,female + μ)

σ2

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
(yi,male − μ) =

nm

∑
i=1

(yi,male − μ)
1

nm

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
(yi,female − μ) =

nf

∑
i=1

(yi,female − μ)
1

nf
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FULL CONDITIONALS

With , we haveπ(σ2) = IG( , )
ν0

2

ν0σ2
0

2

σ2|Y , μ, δ ∼ IG( , ),    where

νn = νn + nm + nf

σ2
n = [ν0σ2

0 +
nm

∑
i=1

(yi,male − [μ + δ])2 +

nf

∑
i=1

(yi,female − [μ − δ])2] .

νn

2

νnσ2
n

2

1

νn
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APPLICATION TO DATA

#priors
mu0 <- 15; gamma02 <- 5^2
delta0 <- 0; tau02 <- 3^2
nu0 <- 1; sigma02 <- 5^2

#starting values
mu <- (mean(y_male) + mean(y_female))/2
delta <- (mean(y_male) - mean(y_female))/2
#no need for starting values for sigma_squared, we can sample it first

MU <- DELTA <- SIGMA2 <- NULL
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APPLICATION TO DATA

#set seed
set.seed(1234)

#set number of iterations and burn-in
n_iter <- 10000; burn_in <- 0.2*n_iter

##Gibbs sampler
for (s in 1:(n_iter+burn_in)) {
#update sigma2
sigma2 <- 1/rgamma(1,(nu0 + n_m + n_f)/2,
                   (nu0*sigma02 + sum((y_male-mu-delta)^2) + sum((y_female-mu+delta)^2))/2)

#update mu
gamma2n <- 1/(1/gamma02 + (n_m + n_f)/sigma2)
mun <- gamma2n*(mu0/gamma02 + sum(y_male-delta)/sigma2 + sum(y_female+delta)/sigma2)
mu <- rnorm(1,mun,sqrt(gamma2n))

#update delta
tau2n <- 1/(1/tau02 + (n_m+n_f)/sigma2)
deltan <- tau2n*(delta0/tau02 + sum(y_male-mu)/sigma2 - sum(y_female-mu)/sigma2)
delta <- rnorm(1,deltan,sqrt(tau2n))

#save parameter values
MU <- c(MU,mu); DELTA <- c(DELTA,delta); SIGMA2 <- c(SIGMA2,sigma2)
}
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POSTERIOR SUMMARIES

#library(coda)
MU.mcmc <- mcmc(MU,start=1)
summary(MU.mcmc)

## 
## Iterations = 1:12000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 12000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##           Mean             SD       Naive SE Time-series SE 
##      14.712517       0.118765       0.001084       0.001089 
## 
## 2. Quantiles for each variable:
## 
##  2.5%   25%   50%   75% 97.5% 
## 14.48 14.63 14.71 14.79 14.95

(mean(y_male) + mean(y_female))/2 #compare to data

## [1] 14.7127
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POSTERIOR SUMMARIES

DELTA.mcmc <- mcmc(DELTA,start=1)
summary(DELTA.mcmc)

## 
## Iterations = 1:12000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 12000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##           Mean             SD       Naive SE Time-series SE 
##       0.127657       0.119522       0.001091       0.001091 
## 
## 2. Quantiles for each variable:
## 
##     2.5%      25%      50%      75%    97.5% 
## -0.10691  0.04791  0.12743  0.20796  0.36407

summary((2*DELTA)) #rescale as difference in group means

##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -0.63464  0.09582  0.25487  0.25531  0.41592  1.23660

mean(y_male) - mean(y_female) #compare to data

## [1] 0.2553392
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POSTERIOR SUMMARIES

SIGMA2.mcmc <- mcmc(SIGMA2,start=1)
summary(SIGMA2.mcmc)

## 
## Iterations = 1:12000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 12000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##           Mean             SD       Naive SE Time-series SE 
##       2.287927       0.257689       0.002352       0.002352 
## 
## 2. Quantiles for each variable:
## 
##  2.5%   25%   50%   75% 97.5% 
## 1.833 2.107 2.272 2.455 2.841
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DIAGNOSTICS

plot(MU.mcmc)
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DIAGNOSTICS

autocorr.plot(MU.mcmc)
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DIAGNOSTICS

plot(DELTA.mcmc)
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DIAGNOSTICS

autocorr.plot(DELTA.mcmc)
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DIAGNOSTICS

plot(SIGMA2.mcmc)
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DIAGNOSTICS

autocorr.plot(SIGMA2.mcmc)

31 / 48



APPLICATION TO DATA

Posterior probability that boys have larger average BMI than girls is
0.86!

Posterior medians and 95% credible intervals for the group means are
actually quite similar to the unpooled (gender specific) intervals from
classified inference.

#mean for boys
quantile((MU+DELTA),probs=c(0.025,0.5,0.975))

##     2.5%      50%    97.5% 
## 14.50255 14.84146 15.17925

#mean for girls
quantile((MU-DELTA),probs=c(0.025,0.5,0.975))

##     2.5%      50%    97.5% 
## 14.26848 14.58276 14.90761

#posterior probability girls have larger BMI than boys
mean(DELTA > 0)

## [1] 0.8571667

32 / 48



APPLICATION TO DATA

Let's look at a different sub-population. For older individuals , we
only have 8 male and 4 female.

y_male <- bmi[Howell1$age > 75 & Howell1$male==1]
y_female <- bmi[Howell1$age > 75 & Howell1$male==0]
n_m <- length(y_male)
n_f <- length(y_female)
n_m

## [1] 8

n_f

## [1] 4

> 75
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APPLICATION TO DATA

A 95% confidence interval for the difference between genders in BMI
(estimated as 0.24) is (-4.20,4.68).

mean(y_male) - mean(y_female)

## [1] 0.2408966

t.test(y_male,y_female)

## 
##     Welch Two Sample t-test
## 
## data:  y_male and y_female
## t = 0.13801, df = 5.1869, p-value = 0.8954
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.197948  4.679741
## sample estimates:
## mean of x mean of y 
##  18.06751  17.82662
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APPLICATION TO DATA

Let's apply the shrinkage model with these priors:

,

,

.

Using the shrinkage model, the posterior mean is 0.25 with 95% CI
(-3.45, 3.88).

mean((DELTA*2))

## [1] 0.2493733

quantile((DELTA*2),probs=c(0.025,0.5,0.975))

##       2.5%        50%      97.5% 
## -3.4466931  0.2758598  3.8762543

Our precision has been improved by borrowing of information across the
groups. Of course the prior is important here given the sample sizes.

μ0 = 18, γ0 = 5

δ0 = 0, τ0 = 3

ν0 = 1,σ0 = 5
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COMPARING MULTIPLE GROUPS

Suppose we wish to investigate the mean (and distribution) of test scores
for students at  different high schools.

In each school , where , suppose we test a random sample

of  students.

Let  be the test score for the th student in school , with ,

with

where for each school ,  is the school-wide average test score, and 

is the school-wide variance of individual test scores.

This is what we did for the the Pygmalion study, job training data and the
science classroom exercise on homework 3.

J

j j = 1, … , J

nj

yij i j i = 1, … , nj

yij|θj, σ2
j

∼ N (θj, σ2
j
)

j θj σ2
j
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SCHOOL TESTING EXAMPLE

Classical inference for each school can be based on large sample 95%

CI: , where  is the sample average in school , and 

is the sample variance in school .

Clearly, we can overfit the data within schools, for example, what if we
only have 4 students from one of the schools?  can be a good estimate

if  is large but it may be poor if  is small.

Option II: alternatively, we might believe that  for all ; that is, all

schools have the same mean. This is the assumption (null hypothesis) in
ANOVA models for example. We can also set  for all .

Option I ignores that the 's should be reasonably similar, whereas

option II ignores any differences between them.

It would be nice to find a compromise! Borrowing information across,
and shrinking our estimate towards a grand mean could be very useful
here.

ȳ j ± 1.96√s2
j /nj ȳ j j s2

j

j

ȳ j

nj nj

θj = μ j

σ2
j = σ2 J

θj
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SCHOOL TESTING EXAMPLE

For the Pygmalion study and job training data, we focused using priors
that are independent between the groups.

For example, in the conjugate case, we would have

for some hyperparameters (constants), , , , and .

In the semi-conjugate case,

for some hyperparameters (constants), , , , and .

π(θj|σ2
j
) = N (μ0, )

π(σ2
j ) = IG( , )

σ2
j

κ0

ν0

2

ν0σ2
0

2

μ0 κ0 ν0 σ2
0

π(θj) = N (μ0, σ2
0)

π(σ2
j
) = IG( , )

ν0

2

ν0γ2
0

2

μ0 σ2
0

ν0 γ2
0
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HIERARCHICAL NORMAL MODEL

Instead, we can assume that the 's are drawn from a distribution based

on the following: conceive of the schools themselves as being a random
sample from all possible schools.

For now, assume the variance is constant across schools. The hierarchical
normal model assumes normal sampling models both within and between
groups:

which gives us an extra level in the prior on the means, which leads to
sharing of information across the groups in estimating the group-specific
means.

We have an extra variance parameter . Comparing  to  tells us
how much of the variation in  is due to within-group versus between-
group variation.

θj

yij|θj, σ2 ∼ N (θj, σ2) ;    i = 1, … , nj

θj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J,

τ 2 τ 2 σ2

Y
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HIERARCHICAL NORMAL MODEL

Standard semi-conjugate priors are given by

with

: best guess of average of school averages

: set based on plausible ranges of values of 

: best guess of variance of school averages

: set based on how tight prior for  is around 

: best guess of variance of individual test scores around respective

school means

: set based on how tight prior for  is around .

π(μ) = N (μ0, γ2
0)

π(σ2) = IG( , )

π(τ 2) = IG( , ) .

ν0

2

ν0σ
2
0

2

η0

2

η0τ
2
0

2

μ0

γ
2
0 μ

τ
2
0

η0 τ 2 τ 2
0

σ2
0

ν0 σ2 σ
2
0
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EXCHANGEABILITY

This model relies heavily on exchangeability across units at each level.

For example, we assume the schools are a random sample from the
population of all schools, and the students within schools are a random
sample of all the students in each school.

This is not always completely true.

Note: we can allow the variance to vary across schools if desired (and
we will soon in fact).
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EXCHANGEABILITY

Turns out that conditional exchangeability would be enough if we
control for relevant variables in our modeling.

For example, the schools in Chapel Hill/Carrboro are not entirely
exchangeable.

For example, Phoenix Academy is for students on long-term out-of-school
suspension or who need to make up work due to extended absences
(e.g., pregnancy), and Memorial Hospital School is for children battling
serious illnesses.

However, if we condition on school type (public, charter, private, special
services, home), the schools may then be exchangeable.
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POSTERIOR INFERENCE

Recall the model is

Under our prior specification, we can factor the posterior as follows:

yij|θj, σ2 ∼ N (θj, σ2) ;    i = 1, … , nj

θj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J,

π(θ1, … , θJ , μ, σ2, τ 2|Y ) ∝ p(y|θ1, … , θJ , μ, σ2, τ 2)

     × p(θ1, … , θJ |μ, σ2, τ 2)

     × π(μ, σ2, τ 2)

= p(y|θ1, … , θJ , σ2)

     × p(θ1, … , θJ |μ, τ 2)

     × π(μ) ⋅ π(σ2) ⋅ π(τ 2)

= {
J

∏
j=1

nj

∏
i=1

p(yij|θj, σ2)}

     × {
J

∏
j=1

p(θj|μ, τ 2)}

     × π(μ) ⋅ π(σ2) ⋅ π(τ 2)
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FULL CONDITIONAL FOR GRAND MEAN

The full conditional distribution of  is proportional to the part of the joint

posterior  that involves .

That is,

This looks like the full conditional distribution from the one-sample normal
case, so you can show that

and .

μ

π(θ1, … , θJ , μ, σ2, τ 2|Y ) μ

π(μ|θ1, … , θJ , σ2, τ 2, Y ) ∝ {
J

∏
j=1

p(θj|μ, τ 2)} ⋅ π(μ).

π(μ|θ1, … , θJ , σ2, τ 2, Y ) = N (μn, γ2
n)     where

γ2
n = ;         μn = γ2

n [ θ̄ + μ0]
1

+
J

τ 2

1

γ2
0

J

τ 2

1

γ2
0

θ̄ =
J

∑
j=1

θj
1
J
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FULL CONDITIONALS FOR GROUP MEANS

Similarly, the full conditional distribution of each  is proportional to the

part of the joint posterior  that involves .

That is,

Those terms include a normal for  multiplied by a product of normals in

which  is the mean, again mirroring the one-sample case, so you can

show that

θj

π(θ1, … , θJ , μ, σ2, τ 2|Y ) θj

π(θj|μ, σ2, τ 2, Y ) ∝ {
nj

∏
i=1

p(yij|θj, σ2)} ⋅ p(θj|μ, τ 2)

θj

θj

π(θj|μ, σ2, τ 2, Y ) = N (θ⋆
j
, ν⋆

j
)     where

ν⋆
j

= ;        θ⋆
j

= ν⋆
j
[ ȳ j + μ]

1

+
nj

σ2

1

τ 2

nj

σ2

1

τ 2
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FULL CONDITIONALS FOR GROUP MEANS

Our estimate for each  is a weighted average of  and , ensuring

that we are borrowing information across all levels through  and .

The weights for the weighted average is determined by relative
precisions from the data and from the second level model.

The groups with smaller  have estimated  closer to  than schools

with larger .

Thus, degree of shrinkage of  depends on ratio of within-group to

between-group variances.

θj ȳ j μ

μ τ 2

nj θ⋆

j μ

nj

θj
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FULL CONDITIONALS FOR ACROSS-GROUP

VARIANCE

The full conditional distribution of  is proportional to the part of the
joint posterior  that involves .

That is,

As in the case for , this looks like the one-sample normal problem, and

our full conditional posterior is

τ 2

π(θ1, … , θJ , μ, σ2, τ 2|Y ) τ 2

π(τ 2|θ1, … , θJ , μ, σ2, Y ) ∝ {
J

∏
j=1

p(θj|μ, τ 2)} ⋅ π(τ 2)

μ

π(τ 2|θ1, … , θJ , μ, σ2, Y ) = IG( , )     where

ηn = η0 + J;        τ 2
n = [η0τ 2

0 +
J

∑
j=1

(θj − μ)2] .

ηn

2

ηnτ 2
n

2

1

ηn
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FULL CONDITIONALS FOR WITHIN-GROUP

VARIANCE

Finally, the full conditional distribution of  is proportional to the part of
the joint posterior  that involves .

That is,

We can again take advantage of the one-sample normal problem, so
that our full conditional posterior is

σ2

π(θ1, … , θJ , μ, σ2, τ 2|Y ) σ2

π(σ2|θ1, … , θJ , μ, τ 2, Y ) ∝ {
J

∏
j=1

nj

∏
i=1

p(yij|θj, σ2)} ⋅ π(σ2)

π(σ2|θ1, … , θJ , μ, τ 2, Y ) = IG( , )     where

νn = ν0 +
J

∑
j=1

nj;        σ2
n = [ν0σ2

0 +
J

∑
j=1

nj

∑
i=1

(yij − θj)
2] .

νn

2

νnσ2
n

2

1

νn
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