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READING EXAMPLE

: pre-instructional score for student  and : post-instructional score
for student .

Model:

,

, and

.

Then,

where

Yi1 i Yi2

i

Yi = (Yi1, Yi2)T ∼ N2(θ, Σ)

π(θ) = N2(μ0, Λ0)

π(Σ) = IW2(ν0, S0)

π(θ|Σ, Y ) = N2(μn, Λn)

Λn = [Λ−1
0 + nΣ−1]

−1

μn = Λn [Λ−1
0 μ0 + nΣ−1ȳ]

μ0 = (
50

50
) ;    Λ0 = (

156 78

78 156
) .
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READING EXAMPLE: POSTERIOR

COMPUTATION

and

or using the notation in the book, , where

π(Σ|θ|Y ) = IW2(νn, Sn)

IW2(νn, S−1
n )

νn = ν0 + n

Sn = [S0 + Sθ]

= [S0 +
n

∑
i=1

(yi − θ)(yi − θ)T] .

ν0 = p + 2 = 4

Σ0 = (
625 312.5

312.5 625
)
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POSTERIOR DISTRIBUTION OF THE MEAN
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ANSWERING QUESTIONS OF INTEREST

Questions of interest:

Do students improve in reading comprehension on average?

Need to compute . In R,

mean(THETA[,2]>THETA[,1])

## [1] 0.992

That is, posterior probability  and indicates strong evidence that
test scores are higher in the second administration.

Pr[θ2 > θ1|Y ]

> 0.99
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ANSWERING QUESTIONS OF INTEREST

Questions of interest:

If so, by how much?

Need posterior summaries . In R,

mean(THETA[,2] - THETA[,1])

## [1] 6.385515

quantile(THETA[,2] - THETA[,1], prob=c(0.025, 0.5, 0.975))

##      2.5%       50%     97.5% 
##  1.233154  6.385597 11.551304

Mean (and median) improvement is  points with 95% credible
interval (1.23, 11.55).

Pr[θ2 − θ1|Y ]

≈ 6.39
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ANSWERING QUESTIONS OF INTEREST

Questions of interest:

How correlated (positively) are the post-test and pre-test scores?

We can compute . In R,

mean(SIGMA[,2]>0)

## [1] 1

Posterior probability that the covariance between them is positive is
basically 1.

Pr[σ12 > 0|Y ]
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ANSWERING QUESTIONS OF INTEREST

Questions of interest:

How correlated (positively) are the post-test and pre-test scores?

We can also look at the distribution of  instead. In R,

CORR <- SIGMA[,2]/(sqrt(SIGMA[,1])*sqrt(SIGMA[,4]))
quantile(CORR,prob=c(0.025, 0.5, 0.975))

##      2.5%       50%     97.5% 
## 0.4046817 0.6850218 0.8458880

Median correlation between the 2 scores is 0.69 with a 95% quantile-
based credible interval of (0.40, 0.85)

Because density is skewed, we may prefer the 95% HPD interval, which
is (0.45, 0.88).

#library(hdrcde)
hdr(CORR,prob=95)$hdr

##          [,1]      [,2]
## 95% 0.4468522 0.8761174

ρ

10 / 48



JEFFREYS' PRIOR

Clearly, there's a lot of work to be done in specifying the
hyperparameters (two or which are  matrices).

What if we want to specify the priors so that we put in as little
information as possible?

We already know how to do that somewhat with Jeffreys' priors.

For the multivariate normal model, turns out that the Jeffreys' rule for
generating a prior distribution on  gives

Can we derive the full conditionals under this prior?

To be done on the board.

p × p

(θ, Σ)

π(θ, Σ) ∝ |Σ|− .
(p+2)

2
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JEFFREYS' PRIOR

We can leverage previous work. For the likelihood we have both

and

where .

Also, we can rewrite any  as

Finally, ,

L(Y ; θ, Σ) ∝ exp{− θT (nΣ−1)θ + θT (nΣ−1ȳ)}
1

2

L(Y ; θ, Σ) ∝ |Σ|−  exp{− tr [SθΣ−1]} ,
n

2
1

2

Sθ = ∑n

i=1(yi − θ)(yi − θ)T

Np(μ0, Λ0)

p(θ) ∝ exp{− θT Λ−1
0 θ + θT Λ−1

0 μ0} .
1

2

Σ ∼ IWp(ν0, S0)

⇒   p(Σ)  ∝  |Σ| exp{− tr(S0Σ−1)} .
−(ν0+p+1)

2
1

2
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MISSING DATA AND IMPUTATION
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MISSING DATA

Missing data/nonresponse is fairly common in real data. For example,

Failure to respond to survey question

Subject misses some clinic visits out of all possible

Only subset of subjects asked certain questions

Recall that our posterior computation usually depends on the data
through , which cannot be computed when some of the  values

are missing.

The most common software packages often throw away all subjects with
incomplete data (can lead to bias and precision loss).

Some individuals impute missing values with a mean or some other fixed
value (ignores uncertainty).

As you will see, imputing missing data is actually quite natural in the
Bayesian context.

L(Y ; θ) yi
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MISSING DATA MECHANISMS

Data are said to be missing completely at random (MCAR) if the reason
for missingness does not depend on the values of the observed data or
missing data.

For example, suppose

you handed out a double-sided survey questionnaire of 20 questions
to a sample of participants;

questions 1-15 were on the first page but questions 16-20 were at the
back; and

some of the participants did not respond to questions 16-20.

Then, the values for questions 16-20 for those people who did not
respond would be MCAR if they simply did not realize the pages were
double-sided; they had no reason to ignore those questions.

This is rarely plausible in practice!
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MISSING DATA MECHANISMS

Data are said to be missing at random (MAR) if, conditional on the
values of the observed data, the reason for missingness does not depend
on the missing data.

Using our previous example, suppose

questions 1-15 include demographic information such as age and
education;

questions 16-20 include income related questions; and

once again, some participants did not respond to questions 16-20.

Then, the values for questions 16-20 for those people who did not
respond would be MAR if younger people are more likely not to respond
to those income related questions than old people, where age is
observed for all participants.

This is the most commonly assumed mechanism in practice!
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MISSING DATA MECHANISMS

Data are said to be missing not at random (MNAR or NMAR) if the
reason for missingness depends on the actual values of the missing
(unobserved) data.

Continuing with our previous example, suppose again that

questions 1-15 include demographic information such as age and
education;

questions 16-20 include income related questions; and

once again, some of the participants did not respond to questions 16-
20.

Then, the values for questions 16-20 for those people who did not
respond would be MNAR if people who earn more money are less likely
to respond to those income related questions than old people.

This is usually the case in real data, but analysis can be
complex!
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MATHEMATICAL FORMULATION

Consider the multivariate data scenario with , where 

, for .

For now, we will assume the multivariate normal model as the sampling
model, so that each .

Suppose now that  contains missing values.

We can separate  into the observed and missing parts, that is, 
.

Then for each individual, .

Yi = (Y1, … , Yn)T

Yi = (Yi1, … , Yip)T i = 1, … , n

Yi = (Yi1, … , Yip)T ∼ Np(θ, Σ)

Y

Y

Y = (Yobs, Ymis)

Yi = (Yi,obs, Yi,mis)
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MATHEMATICAL FORMULATION

Let

 index variables (where  already indexes individuals),

 when  is missing,

 when  is observed.

Here,  is known as the missingness indicator of variable  for person .

Also, let

 be the vector of missing indicators for person .

 be the matrix of missing indicators for everyone.

 be the set of parameters associated with .

Assume  and  are distinct.

j i

rij = 1 yij

rij = 0 yij

rij j i

Ri = (ri1, … , rip)T i

R = (R1, … , Rn)

ψ R

ψ (θ, Σ)
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MATHEMATICAL FORMULATION

MCAR:

MAR:

MNAR:

p(R|Y , θ, Σ, ψ) = p(R|Ψ)

p(R|Y , θ, Σ, ψ) = p(R|Yobs, Ψ)

p(R|Y , θ, Σ, ψ) = p(R|Yobs, Ymis, Ψ)
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IMPLICATIONS FOR LIKELIHOOD FUNCTION

Each type of mechanism has a different implication on the likelihood of
the observed data , and the missing data indicator .

Without missingness in , the likelihood of the observed data is

With missingness in , the likelihood of the observed data is instead

Since we do not actually observe , we would like to be able to
integrate it out so we don't have to deal with it.

That is, we would like to infer  (and sometimes, ) using only the

observed data.

Yobs R

Y

L(Yobs; θ, Σ) ∝ p(Yobs|θ, Σ)

Y

L(Yobs, R; θ, Σ, ψ) ∝ p(Yobs, R|θ, Σ, ψ)

= ∫ p(R|Yobs, Ymis, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

Ymis

(θ, Σ) ψ
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LIKELIHOOD FUNCTION: MCAR
For MCAR, we have:

For inference on , we can simply focus on  in the

likelihood function, since  does not include any .

L(Yobs, R; θ, Σ, ψ) ∝ p(Yobs, R|θ, Σ, ψ)

= ∫ p(R|Yobs, Ymis, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

= ∫ p(R|ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

= p(R|ψ) ⋅ ∫ p(Yobs, Ymis|θ, Σ)dYmis

= p(R|ψ) ⋅ p(Yobs|θ, Σ).

(θ, Σ) p(Yobs|θ, Σ)

(R|ψ) Y
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LIKELIHOOD FUNCTION: MAR
For MAR, we have:

For inference on , we can once again focus on  in the

likelihood function, although there can be some bias if we do not account
for , since it contains observed data.

Also, if we want to infer the missingness mechanism through , we would

need to deal with  anyway.

L(Yobs, R; θ, Σ, ψ) ∝ p(Yobs, R|θ, Σ, ψ)

= ∫ p(R|Yobs, Ymis, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

= ∫ p(R|Yobs, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

= p(R|Yobs, ψ) ⋅ ∫ p(Yobs, Ymis|θ, Σ)dYmis

= p(R|Yobs, ψ) ⋅ p(Yobs|θ, Σ).

(θ, Σ) p(Yobs|θ, Σ)

p(R|Yobs, X, θ)

ψ

p(R|Yobs, X, θ)
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LIKELIHOOD FUNCTION: MNAR
For MNAR, we have:

The likelihood under MNAR cannot simplify any further.

In this case, we cannot ignore the missing data when making inferences
about .

We must include the model for  and also infer the missing data .

L(Yobs, R; θ, Σ, ψ) ∝ p(Yobs, R|θ, Σ, ψ)

= ∫ p(R|Yobs, Ymis, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis.

(θ, Σ)

R Ymis
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HOW TO TELL IN PRACTICE?
So how can we tell the type of mechanism we are dealing with?

In general, we don't know!!!

Rare that data are MCAR (unless planned beforehand); more likely that
data are MNAR.

Compromise: assume data are MAR if we include enough variables in
model for the missing data indicator .

Whenever we talk about missing data in this course, we will do so in the
context of MCAR and MAR.

R
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BAYESIAN INFERENCE WITH MISSING DATA

As we have seen, for MCAR and MAR, we can focus on  in

the likelihood function, when inferring .

While this is great, for posterior sampling under most models (especially
multivariate models), we actually do need all the 's to update the
parameters.

In addition, we may actually want to learn about the missing values, in
addition to inferring .

By thinking of the missing data as another set of parameters, we
can sample them from the "posterior predictive" distribution of the
missing data conditional on the observed data and parameters:

In the case of the multivariate model, each  is just a

normal distribution, and we can leverage results on conditional
distributions for normal models.

p(Yobs|θ, Σ)

(θ, Σ)

Y

(θ, Σ)

p(Ymis|Yobs, θ, Σ) ∝
n

∏
i=1

p(Yi,mis|Yi,obs, θ, Σ).

p(Yi,mis|Yi,obs, θ, Σ)
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GIBBS SAMPLER WITH MISSING DATA

At iteration , do the following

1. Sample  from its multivariate normal full conditional

2. Sample  from its inverse-Wishart full conditional

3. For each , with at least one zero value in the missingness

indicator vector , sample  from the full conditional

which is also multivariate normal, with its form derived by original
sampling model but with the updated parameters, that is, 

.

s + 1

θ(s+1)

p(θ
(s+1)|Yobs, Y

(s)

mis, Σ(s)).

Σ(s+1)

p(Σ(s+1)|Yobs, Y
(s)

mis, θ
(s+1)).

i = 1, … , n

Ri Y
(s+1)

i,mis

p(Y
(s+1)

i,mis |Yi,obs, θ
(s+1), Σ(s+1)),

Yi = (Yi1, … , Yip)T = (Yi,obs, Yi,mis)T ∼ Np(θ(s+1), Σ(s+1))
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GIBBS SAMPLER WITH MISSING DATA

Rewrite  as

so that we can take advantage of the conditional normal results.

That is, we have

as the multivariate normal distribution (or univariate normal distribution if
 only has one missing entry) we need in step 3 of the Gibbs sampler.

This sampling technique actually encodes MAR since the imputations for 
 depend on the .

Now let's revisit the reading comprehension example again. We will add
missing values to the original data and refit the model.

Yi = (Yi,mis, Yi,obs)T ∼ Np(θ(s+1), Σ(s+1))

Yi = (
Yi,mis

Yi,obs

) ∼ Np [(
θ1

θ2
) ,(

Σ11 Σ12

Σ21 Σ22
)] ,

Yi,mis|Yi,obs = yi,obs ∼ N (θ1 + Σ12Σ−1
22 (yi,obs − θ2), Σ11 − Σ12Σ−1

22 Σ21) .

Yi

Ymis Yobs
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READING EXAMPLE WITH MISSING DATA

Y <- as.matrix(dget("http://www2.stat.duke.edu/~pdh10/FCBS/Inline/Y.reading"))

#Add 20% missing data; MCAR
set.seed(1234)
Y_WithMiss <- Y #So we can keep the full data
Miss_frac <- 0.20
R <- matrix(rbinom(nrow(Y_WithMiss)*ncol(Y_WithMiss),1,Miss_frac),
            nrow(Y_WithMiss),ncol(Y_WithMiss))
Y_WithMiss[R==1]<-NA
Y_WithMiss[1:12,]

##       pretest posttest
##  [1,]      59       77
##  [2,]      43       39
##  [3,]      34       46
##  [4,]      32       NA
##  [5,]      NA       38
##  [6,]      38       NA
##  [7,]      55       NA
##  [8,]      67       86
##  [9,]      64       77
## [10,]      45       60
## [11,]      49       50
## [12,]      72       59

colMeans(is.na(Y_WithMiss))

##   pretest  posttest 
## 0.1363636 0.2272727

29 / 48



READING EXAMPLE WITH MISSING DATA

#ACTUAL ANALYSIS STARTS HERE!!!
#Data dimensions
n <- nrow(Y_WithMiss); p <- ncol(Y_WithMiss)

#Hyperparameters for the priors
mu_0 <- c(50,50)
Lambda_0 <- matrix(c(156,78,78,156),nrow=2,ncol=2)
nu_0 <- 4
S_0 <- matrix(c(625,312.5,312.5,625),nrow=2,ncol=2)

#Define missing data indicators
##we already know R. This is to write a more general code for when we don't
R <- 1*(is.na(Y_WithMiss))
R[1:12,]

##       pretest posttest
##  [1,]       0        0
##  [2,]       0        0
##  [3,]       0        0
##  [4,]       0        1
##  [5,]       1        0
##  [6,]       0        1
##  [7,]       0        1
##  [8,]       0        0
##  [9,]       0        0
## [10,]       0        0
## [11,]       0        0
## [12,]       0        0
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READING EXAMPLE WITH MISSING DATA

#Initial values for Gibbs sampler
Y_Full <- Y_WithMiss #So we can keep the data with missing values as is
for (j in 1:p) {
Y_Full[is.na(Y_Full[,j]),j] <- mean(Y_Full[,j],na.rm=TRUE) #start with mean imputation
}

Sigma <- S_0 # can't really rely on cov(Y) because we don't have full Y

#Set null objects to save samples
THETA_WithMiss <- NULL
SIGMA_WithMiss <- NULL
Y_MISS <- NULL

#first set number of iterations and burn-in, then set seed
n_iter <- 10000; burn_in <- 0.3*n_iter
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GIBBS SAMPLER WITH MISSING DATA

#library(mvtnorm) for multivariate normal
#library(MCMCpack) for inverse-Wishart

Lambda_0_inv <- solve(Lambda_0) #move outside sampler since it does not change

for (s in 1:(n_iter+burn_in)){
  ##first we must recalculate ybar inside the loop now since it changes every iteration
  ybar <- apply(Y_Full,2,mean)

  ##update theta
  Sigma_inv <- solve(Sigma) #invert once
  Lambda_n <- solve(Lambda_0_inv + n*Sigma_inv)
  mu_n <- Lambda_n %*% (Lambda_0_inv%*%mu_0 + n*Sigma_inv%*%ybar)
  theta <- rmvnorm(1,mu_n,Lambda_n)

  ##update Sigma
  S_theta <- (t(Y_Full)-c(theta))%*%t(t(Y_Full)-c(theta))
  S_n <- S_0 + S_theta
  nu_n <- nu_0 + n
  Sigma <- riwish(nu_n, S_n)
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GIBBS SAMPLER WITH MISSING DATA

##update missing data using updated draws of theta and Sigma
  for(i in 1:n) {
    if(sum(R[i,]>0)){
       obs_index <- R[i,]==0
       mis_index <- R[i,]==1
       Sigma_22_obs_inv <- solve(Sigma[obs_index,obs_index]) #invert just once
       Sigma_12_Sigma_22_obs_inv <- Sigma[mis_index,obs_index]%*%Sigma_22_obs_inv

       Sigma_cond_mis <- Sigma[mis_index,mis_index] - 
         Sigma_12_Sigma_22_obs_inv%*%Sigma[obs_index,mis_index]

       mu_cond_mis <- theta[mis_index] + 
         Sigma_12_Sigma_22_obs_inv%*%(t(Y_Full[i,obs_index])-theta[obs_index])

      Y_Full[i,mis_index] <- rmvnorm(1,mu_cond_mis,Sigma_cond_mis)
      }
    }

  #save results only past burn-in
  if(s > burn_in){
  THETA_WithMiss <- rbind(THETA_WithMiss,theta)
  SIGMA_WithMiss <- rbind(SIGMA_WithMiss,c(Sigma))
  Y_MISS <- rbind(Y_MISS, Y_Full[R==1] )
  }
}

colnames(THETA_WithMiss) <- c("theta_1","theta_2")
colnames(SIGMA_WithMiss) <- c("sigma_11","sigma_12","sigma_21","sigma_22") #symmetry in sig
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DIAGNOSTICS

#library(coda)
THETA_WithMiss.mcmc <- mcmc(THETA_WithMiss,start=1); summary(THETA_WithMiss.mcmc)

## 
## Iterations = 1:10000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##          Mean    SD Naive SE Time-series SE
## theta_1 45.64 3.012  0.03012        0.03276
## theta_2 54.15 3.453  0.03453        0.03939
## 
## 2. Quantiles for each variable:
## 
##          2.5%   25%   50%   75% 97.5%
## theta_1 39.60 43.65 45.62 47.64 51.55
## theta_2 47.31 51.91 54.17 56.45 61.08
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DIAGNOSTICS

SIGMA_WithMiss.mcmc <- mcmc(SIGMA_WithMiss,start=1); summary(SIGMA_WithMiss.mcmc)

## 
## Iterations = 1:10000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##           Mean    SD Naive SE Time-series SE
## sigma_11 194.8 62.89   0.6289         0.6063
## sigma_12 152.1 60.58   0.6058         0.6910
## sigma_21 152.1 60.58   0.6058         0.6910
## sigma_22 247.7 83.55   0.8355         0.9659
## 
## 2. Quantiles for each variable:
## 
##            2.5%   25%   50%   75% 97.5%
## sigma_11 108.30 151.2 182.5 224.4 348.6
## sigma_12  64.76 110.3 141.9 182.0 299.6
## sigma_21  64.76 110.3 141.9 182.0 299.6
## sigma_22 133.33 189.3 231.8 289.0 450.8
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COMPARE TO INFERENCE FROM FULL DATA

With missing data:

apply(THETA_WithMiss,2,summary)

##          theta_1  theta_2
## Min.    32.64839 41.13748
## 1st Qu. 43.65457 51.90859
## Median  45.61740 54.16720
## Mean    45.63740 54.14929
## 3rd Qu. 47.64129 56.45068
## Max.    58.65830 70.26826

Based on true data:

apply(THETA,2,summary)

##          theta_1  theta_2
## Min.    35.50314 37.80999
## 1st Qu. 45.35465 51.53327
## Median  47.36177 53.68602
## Mean    47.29978 53.68529
## 3rd Qu. 49.22875 55.82192
## Max.    60.94924 69.92354

Very similar for the most part.

36 / 48



COMPARE TO INFERENCE FROM FULL DATA

With missing data:

apply(SIGMA_WithMiss,2,summary)

##          sigma_11  sigma_12  sigma_21  sigma_22
## Min.     74.61274 -10.83674 -10.83674  82.55346
## 1st Qu. 151.17000 110.33973 110.33973 189.31667
## Median  182.49663 141.85462 141.85462 231.76447
## Mean    194.75107 152.14494 152.14494 247.72255
## 3rd Qu. 224.42867 181.98838 181.98838 288.99033
## Max.    712.33562 600.36262 600.36262 960.62283

Based on true data:

apply(SIGMA,2,summary)

##          sigma_11  sigma_12  sigma_21  sigma_22
## Min.     79.44258  11.41663  11.41663  93.65776
## 1st Qu. 158.21469 113.23258 113.23258 203.21138
## Median  190.77854 144.74881 144.74881 244.56334
## Mean    202.34721 155.33355 155.33355 260.07072
## 3rd Qu. 234.77319 186.50429 186.50429 300.90761
## Max.    671.16538 613.88088 613.88088 947.39333

Also very similar. A bit more uncertainty in dimension of  because we have
more missing data there.

Yi2
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DIAGNOSTICS: TRACE PLOTS

plot(THETA_WithMiss.mcmc[,"theta_1"])

Looks good!
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DIAGNOSTICS: TRACE PLOTS

plot(THETA_WithMiss.mcmc[,"theta_2"])

Looks good!
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DIAGNOSTICS: TRACE PLOTS

plot(SIGMA_WithMiss.mcmc[,"sigma_11"])

Looks good!
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DIAGNOSTICS: TRACE PLOTS

plot(SIGMA_WithMiss.mcmc[,"sigma_12"])

Looks good!

41 / 48



DIAGNOSTICS: TRACE PLOTS

plot(SIGMA_WithMiss.mcmc[,"sigma_22"])

Looks good!
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DIAGNOSTICS: AUTOCORRELATION

autocorr.plot(THETA_WithMiss.mcmc[,"theta_1"])

Looks good!
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DIAGNOSTICS: AUTOCORRELATION

autocorr.plot(THETA_WithMiss.mcmc[,"theta_2"])

Looks good!
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DIAGNOSTICS: AUTOCORRELATION

autocorr.plot(SIGMA_WithMiss.mcmc[,"sigma_11"])

Looks good!
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DIAGNOSTICS: AUTOCORRELATION

autocorr.plot(SIGMA_WithMiss.mcmc[,"sigma_12"])

Looks good!
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DIAGNOSTICS: AUTOCORRELATION

autocorr.plot(SIGMA_WithMiss.mcmc[,"sigma_22"])

Looks good!
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POSTERIOR DISTRIBUTION OF THE MEAN
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