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ANNOUNCEMENTS

Take Survey I

Link: https://duke.qualtrics.com/jfe/form/SV_54rrMwDxp3hmagt

Responses are anonymized.

OUTLINE

Wrap up exercise from last class

Multivariate normal/Gaussian model

Motivating example

Inference for mean

Inference for covariance
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RECAP OF CONDITIONAL DISTRIBUTIONS

Partition  as

where

 and  are ,

 and  are ,

 is , and

 is , with .

Then,

Y = (Y1, … , Yp)T

Y = (
Y1

Y2
) ∼ Np [(

μ1

μ2

) ,(
Σ11 Σ12

Σ21 Σ22
)] ,

Y1 μ1 q × 1

Y2 μ2 (p − q) × 1

Σ11 q × q

Σ22 (p − q) × (p − q) Σ22 > 0

Y1|Y2 = y2 ∼ Nq (μ1 + Σ12Σ−1
22 (y2 − μ2), Σ11 − Σ12Σ−1

22 Σ21) .
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WORKING WITH NORMAL DISTRIBUTIONS

Three real (univariate) random quantities ,  and  have a joint normal

distribution given by .

Suppose

 independently of , for some known variance ;

 for some known parameter , and known variance

; and

, with some known mean , and known variance 

.

What is

? ?

? ?

To be done on the board.

x y z

p(x, y, z) = p(y|x)p(x|z)p(z)

p(y|x) = N (x, w) z w

p(x|z) = N (θz, v) θ

v

p(z) = N (m, M) m

M

p(x) p(y)

p(x|y) p(z|x)
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MULTIVARIATE DATA

Survey data often yield multivariate data of varied types.

Typical survey data: response vector  for each

person  in a sample of survey respondents, . For example,
we could have

 income

 level of education

 number of children

 age

 attitude

Interest is then often on inferring the potential associations among these
variables.

See https://www.stat.washington.edu/people/pdhoff/public/coptalk.pdf

Yi = (Yi1, … , Yip)T

i i = 1, … , n

yi1 =

yi2 =

yi3 =

yi4 =

yi5 =
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GSS DATA

See https://www.stat.washington.edu/people/pdhoff/public/coptalk.pdf
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CONDITIONAL MODELS

Interest is often in conditional relationships between pairs of variables,
accounting for heterogeneity in other variables of less interest.

Consider the following models.

GSS data:

Model 1

p-value for  here is 0.11: "little evidence" that .

Model 2

p-value for  here is 0.01: "strong evidence" that .

Not satisfactory; better to use multivariate models instead to do this
jointly.

See https://www.stat.washington.edu/people/pdhoff/public/coptalk.pdf

INCi = β0 + β1CHILDi + β2DEGi + β3AGEi + β4PCHILDi + β5PINCi + β6PDEGi + ϵi

β1 β1 ≠ 0

CHILDi ∼ Poisson (exp [β0 + β1INCi + β2DEGi + β3AGEi + β4PCHILDi + β5PINCi + β6PDEGi])

β1 β1 ≠ 0
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MULTIVARIATE NORMAL DISTRIBUTION RECAP

Recall that if , then

 is the  mean vector, that is, .

 is the  positive definite covariance matrix, that is, ,

where  denotes the covariance between  and .

For each , .

How to do posterior inference if this is our sampling model?

Y = (Y1, … , Yp)T ∼ Np(θ, Σ)

f(y) = (2π)− |Σ|−  exp{− (y − θ)T Σ−1(y − θ)} .
p

2

1

2
1

2

θ p × 1 θ = (θ1, … , θp)T

Σ p × p Σ = {σjk}

σjk Yj Yk

j = 1, … , p Yj ∼ N (θj, σjj)
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READING COMPREHENSION EXAMPLE

Twenty-two children are given a reading comprehension test before and
after receiving a particular instruction method.

: pre-instructional score for student .

: post-instructional score for student .

Vector of observations for each student: .

Clearly, we should expect some correlation between  and .

Yi1 i

Yi2 i

Yi = (Yi1,Yi2)T

Yi1 Yi2
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READING COMPREHENSION EXAMPLE

Questions of interest:

Do students improve in reading comprehension on average?

If so, by how much?

Can we predict post-test score from pre-test score?

If there is a "significant" improvement, does that mean the
instructional method is good?

If we have students with missing pre-test scores, can we predict the
scores?

We will come back to this example. First, let's specify priors and see what
the implied (conditional) posteriors look like.
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MULTIVARIATE NORMAL LIKELIHOOD

For data , the likelihood is

It will be super useful to be able to write the likelihood in two different
formulations depending on whether we about the posterior of  or .

Yi = (Yi1, … , Yip)T ∼ Np(θ, Σ)

L(Y ; θ, Σ) =
n

∏
i=1

(2π)− |Σ|−  exp{− (yi − θ)T Σ−1(yi − θ)}

∝ |Σ|−  exp{−
n

∑
i=1

(yi − θ)T Σ−1(yi − θ)} .

p

2

1
2

1

2

n

2
1

2

θ Σ
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MULTIVARIATE NORMAL LIKELIHOOD

For , it is convenient to write  as

where .

θ L(Y ; θ, Σ)

L(Y ; θ, Σ) ∝ |Σ|−  exp{−
n

∑
i=1

(yi − θ)T Σ−1(yi − θ)}

∝ exp{−
n

∑
i=1

(yT
i − θT )Σ−1(yi − θ)}

= exp

⎧⎪
⎨
⎪⎩

−
n

∑
i=1

⎡
⎢
⎣

yT
i Σ−1yi−yT

i Σ−1θ − θT Σ−1yi


same term

+ θT Σ−1θ
⎤
⎥
⎦

⎫⎪
⎬
⎪⎭

∝ exp{−
n

∑
i=1

[θT Σ−1θ − 2θT Σ−1yi]}

= exp{−
n

∑
i=1

θT Σ−1θ −
n

∑
i=1

(−2)θT Σ−1yi}

= exp{− nθT Σ−1θ + θT Σ−1
n

∑
i=1

yi}

= exp{− θT (nΣ−1)θ + θT (nΣ−1ȳ)} ,

n

2
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

ȳ = (ȳ1, … , ȳp)T
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PRIOR FOR THE MEAN

A convenient specification of the joint prior is .

As in the univariate case, a convenient conjugate prior distribution for 
is also normal (multivariate in this case).

Assume that .

The pdf will be easier to work with if we write it as

π(θ, Σ) = π(θ)π(Σ)

θ

π(θ) = Np(μ0, Λ0)

π(θ) = (2π)− |Λ0|−  exp{− (θ − μ0)T Λ−1
0 (θ − μ0)}

∝ exp{− (θ − μ0)T Λ−1
0 (θ − μ0)}

= exp

⎧⎪
⎨
⎪⎩

−
⎡
⎢
⎣

θT Λ−1
0 θ−θT Λ−1

0 μ0 − μT
0 Λ−1

0 θ


same term

+ μT
0 Λ−1

0 μ0

⎤
⎥
⎦

⎫⎪
⎬
⎪⎭

∝ exp{− [θT Λ−1
0 θ − 2θT Λ−1

0 μ0]}

= exp{− θT Λ−1
0 θ + θT Λ−1

0 μ0}

p

2

1
2

1

2

1

2

1

2

1

2

1

2
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PRIOR FOR THE MEAN

So we have

Key trick for combining with likelihood: When the normal density
is written in this form, note the following details in the exponent.

In the first part, the inverse of the covariance matrix  is

"sandwiched" between  and .

In the second part, the  in the first part is replaced (sort of) with the
mean , with  keeping its place.

The two points above will help us identify updated means and
updated covariance matrices relatively quickly.

π(θ) ∝ exp{− θT Λ−1
0 θ + θT Λ−1

0 μ0} .
1

2

Λ−1
0

θT θ

θ

μ0 Λ−1
0
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CONDITIONAL POSTERIOR FOR THE MEAN

Our conditional posterior (full conditional) , is then

which is just another multivariate normal distribution.

θ|Σ, Y

π(θ|Σ, Y ) ∝ L(Y ; θ, Σ) ⋅ π(θ)

∝ exp{− θT (nΣ−1)θ + θT (nΣ−1ȳ)}


L(Y ;θ,Σ)

⋅ exp{− θT Λ−1
0 θ + θT Λ−1

0 μ0}


π(θ)

= exp

⎧⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪⎩

− θT (nΣ−1)θ − θT Λ−1
0 θ


First parts from L(Y ;θ,Σ) and π(θ)

+ θT (nΣ−1ȳ) + θT Λ−1
0 μ0


Second parts from L(Y ;θ,Σ) and π(θ)

⎫⎪ ⎪ ⎪ ⎪
⎬
⎪ ⎪ ⎪ ⎪⎭

= exp{− θT [nΣ−1 + Λ−1
0 ] θ + θT [nΣ−1ȳ + Λ−1

0 μ0]} ,

1

2

1

2

1

2

1

2

1

2
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CONDITIONAL POSTERIOR FOR THE MEAN

To confirm the normal density and its parameters, compare to the prior
kernel

and the posterior kernel we just derived, that is,

Easy to see (relatively) that , with

and

π(θ) ∝ exp{− θT Λ−1
0 θ + θT Λ−1

0 μ0}
1

2

π(θ|Σ, Y ) ∝ exp{− θT [Λ−1
0 + nΣ−1] θ + θT [Λ−1

0 μ0 + nΣ−1ȳ]} .
1

2

θ|Σ, Y ∼ Np(μn, Λn)

Λn = [Λ−1
0 + nΣ−1]

−1

μn = Λn [Λ−1
0 μ0 + nΣ−1ȳ]
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BAYESIAN INFERENCE

As in the univariate case, we once again have that

Posterior precision is sum of prior precision and data precision:

Posterior expectation is weighted average of prior expectation and
the sample mean:

Compare these to the results from the univariate case to gain more
intuition.

Λ−1
n = Λ−1

0 + nΣ−1

μn = Λn [Λ−1
0 μ0 + nΣ−1

ȳ]

=

weight on prior mean


[ΛnΛ−1
0 ] μ0


prior mean

+

weight on sample mean


[Λn(nΣ−1)] ȳ


sample mean
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WHAT ABOUT THE COVARIANCE MATRIX?
In the univariate case with , the common choice for the

prior is an inverse-gamma distribution for the variance .

As we have seen, we can rewrite as , so that we have a

gamma prior for the precision .

In the multivariate normal case, we have a covariance matrix  instead
of a scalar.

Appealing to have a matrix-valued extension of the inverse-gamma (and
gamma) that would be conjugate.

yi ∼ N (μ, σ2)

σ2

yi ∼ N (μ, τ −1)

τ

Σ
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POSITIVE DEFINITE AND SYMMETRIC

One complication is that the covariance matrix  must be positive
definite and symmetric.

"Positive definite" means that for all , .

Basically ensures that the diagonal elements of  (corresponding to the
marginal variances) are positive.

Also, ensures that the correlation coefficients for each pair of variables
are between -1 and 1.

Our prior for  should thus assign probability one to set of positive
definite matrices.

Analogous to the univariate case, the inverse-Wishart distribution is the
corresponding conditionally conjugate prior for  (multivariate
generalization of the inverse-gamma).

The textbook covers the construction of Wishart and inverse-Wishart
random variables. We will skip the actual development in class but will
write code to sample random variates.

Σ

x ∈ R
p

xT Σx > 0

Σ

Σ

Σ
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INVERSE-WISHART DISTRIBUTION

A random variable , where  is positive definite and 

, has pdf

where

 is the trace function (sum of diagonal elements),

 is the "degrees of freedom", and

 is a  positive definite matrix.

For this distribution, , for .

Hence,  is the scaled mean of the .

Σ ∼ IWp(ν0,S0) Σ

p × p

p(Σ)  ∝  |Σ| exp{− tr(S0Σ−1)} ,
−(ν0+p+1)

2
1

2

tr(⋅)

ν0 > p − 1

S0 p × p

E[Σ] = S0
1

ν0 − p − 1
ν0 > p + 1

S0 IWp(ν0,S0)
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WISHART DISTRIBUTION

If we are very confidence in a prior guess , for , then we might set

, the degrees of freedom to be very large, and

.

In this case, ,

and  is tightly (depending on the value of ) centered around .

If we are not at all confident but we still have a prior guess , we might
set

, so that the  is finite.

Here,  as before, but  is only loosely centered around .

Σ0 Σ

ν0

S0 = (ν0 − p − 1)Σ0

E[Σ] = S0 = (ν0 − p − 1)Σ0 = Σ0
1

ν0 − p − 1

1

ν0 − p − 1

Σ ν0 Σ0

Σ0

ν0 = p + 2 E[Σ] = S0
1

ν0 − p − 1

S0 = Σ0

E[Σ] = Σ0 Σ Σ0

21 / 26



WISHART DISTRIBUTION

Just as we had with the gamma and inverse-gamma relationship in the
univariate case, we can also work in terms of the Wishart distribution
(multivariate generalization of the gamma) instead.

The Wishart distribution provides a conditionally-conjugate prior for the
precision matrix  in a multivariate normal model.

Specifically, if , then .

A random variable , where  has dimension ,

has pdf

Here, .

Note that the textbook writes the inverse-Wishart as . I

prefer  instead. Feel free to use either notation but try not to

get confused.

Σ−1

Σ ∼ IWp(ν0,S0) Φ = Σ−1 ∼ Wp(ν0,S−1
0 )

Φ ∼ Wp(ν0,S−1
0

) Φ (p × p)

f(Φ)  ∝  |Φ| exp{− tr(S0Φ)} .
ν0−p−1

2
1

2

E[Φ] = ν0S0

IWp(ν0,S−1
0 )

IWp(ν0,S0)
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BACK TO INFERENCE ON COVARIANCE

For inference on , we need to rewrite the likelihood a bit to match the
inverse-Wishart kernel.

First a few results from matrix algebra:

1. , where  is the th diagonal element of a square 

 matrix .

2. Cyclic property:

given that the product  is a square matrix.

3. If  is a  matrix, then for a  vector ,

holds by (1), since  is a scalar.

4. .

Σ

tr(A) = ∑
p

j=1 ajj ajj j

p × p A

tr(ABC) = tr(BCA) = tr(CAB),

ABC

A p × p p × 1 x

x
T

Ax = tr(x
T

Ax)

xT Ax

tr(A + B) = tr(A) + tr(B)
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MULTIVARIATE NORMAL LIKELIHOOD AGAIN

It is thus convenient to rewrite  as

where  is the residual sum of squares matrix.

L(Y ; θ, Σ)

L(Y ; θ, Σ) ∝ |Σ|−  exp {−
n

∑
i=1

(yi − θ)T Σ−1(yi − θ)}


no algebra/change yet

= |Σ|−  exp

⎧⎪ ⎪
⎨
⎪ ⎪⎩

−
n

∑
i=1

tr [(yi − θ)T Σ−1(yi − θ)]


by result 3

⎫⎪ ⎪
⎬
⎪ ⎪⎭

= |Σ|−  exp

⎧⎪ ⎪
⎨
⎪ ⎪⎩

−
n

∑
i=1

tr [(yi − θ)(yi − θ)T Σ−1]


by cyclic property

⎫⎪ ⎪
⎬
⎪ ⎪⎭

= |Σ|−  exp

⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩

− tr [
n

∑
i=1

(yi − θ)(yi − θ)T Σ−1]


by result 4

⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎭

= |Σ|−  exp{− tr [SθΣ−1]} ,

n

2
1

2

n

2
1

2

n

2
1

2

n

2
1

2

n

2
1

2

Sθ = ∑n

i=1(yi − θ)(yi − θ)T
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CONDITIONAL POSTERIOR FOR COVARIANCE

Assuming , the conditional posterior (full conditional) 

, is then

which is , or using the notation in the book, ,

with

, and

π(Σ) = IWp(ν0, S0)

Σ|θ, Y

π(Σ|θ, Y ) ∝ L(Y ; θ, Σ) ⋅ π(θ)

∝ |Σ|−  exp{− tr [SθΣ−1]}



L(Y ;θ,Σ)

⋅ |Σ| exp{− tr(S0Σ−1)}



π(θ)

∝ |Σ| exp{− tr [S0Σ−1 + SθΣ−1]} ,

∝ |Σ| exp{− tr [(S0 + Sθ) Σ−1]} ,

n

2
1

2

−(ν0+p+1)

2
1

2

−(ν0+p+n+1)

2
1

2

−(ν0+n+p+1)

2
1

2

IWp(νn, Sn) IWp(νn, S
−1
n )

νn = ν0 + n

Sn = [S0 + Sθ]
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CONDITIONAL POSTERIOR FOR COVARIANCE

We once again see that the "posterior sample size" or "posterior degrees
of freedom"  is the sum of the "prior degrees of freedom"  and the
data sample size .

 can be thought of as the "posterior sum of squares", which is the sum
of "prior sum of squares" plus "sample sum of squares".

Recall that if , then .

 the conditional posterior expectation of the population covariance is

which is a weighted average of prior expectation and sample estimate.

νn ν0

n

Sn

Σ ∼ IWp(ν0, S0) E[Σ] = S0
1

ν0 − p − 1

⇒

E[Σ|θ, Y ] = [S0 + Sθ]

=


weight on prior expectation

prior expectation


[ S0] +


weight on sample estimate

sample estimate


[ Sθ] ,

1

ν0 + n − p − 1

ν0 − p − 1

ν0 + n − p − 1

1

ν0 − p − 1

n

ν0 + n − p − 1

1

n
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