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ANNOUNCEMENTS

No homework this week.

Midterm in three weeks (might seem like a lot but it is NOT!).

Spend time practicing how to manipulate the univariate and multivariate
normal distributions.

OUTLINE

In-class exercise

Multivariate normal distribution

2 / 12



IN-CLASS EXERCISE

Your friend agrees to conduct a poll for you, free of charge (lucky you!).

You give the following instructions: “Please ask about 25 people whether
they are in favor of more gun control, and report back to me the number
who are in favor.”

After a few days your friend returns with the poll results: there were 
 in favor. “

You then ask, "how many people did you ask?”Your friend says, "ummm,
I dunno. You didn't ask me to record that. All I know is that it was about
25.”

What model can we use to do inference here?

To be done on the board.

y = 20
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PARTICIPATION EXERCISE

You will work in groups of three. Work with the three students closest to
you. Do the following:

1. Using the full conditionals on the board, write a Gibbs sampler to
sample from the joint posterior of  and , using a starting value of 

 and . Set burn-in to 2000 and then proceed to
generate 10000 draws.

2. Look at the posterior densities for both parameters. Describe the
distributions.

3. Give the quantile-based equal-tailed posterior credible interval for ,
rounded to two decimal places.

4. What is the probability that exactly 20 people were polled? What
can you takeaway from this?

5. What is the probability that exactly 25 people were polled? What
can you takeaway from this?

N θ

N = 50 θ = 0.05

θ

4 / 12



MULTIVARIATE DATA

So far we have only considered basic models with scalar/univariate
outcomes, .

In practice however, outcomes of interest are actually often multivariate,
e.g.,

Repeated measures of weight over time in a weight loss study

Measures of multiple disease markers

Tumor counts at different locations along the intestine

Longitudinal data is just a special case of multivariate data.

Interest then is often on how multiple outcomes are correlated, and on
how that correlation may change across outcomes or time points.

Y1, … , Yn
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MULTIVARIATE NORMAL DISTRIBUTION

The most common model for multivariate outcomes is the multivariate
normal distribution.

Next week, we will do actual inference with the multivariate normal
distribution.

We will explore the common choices for prior distributions and then
derive the corresponding posterior distributions.

Today, we'll start slow and simply explore some properties of the
multivariate normal distribution.

Let , where  represents the dimension of the

multivariate outcome variable for a single unit of observation.

For multiple observations,  for .

Y = (Y1, … , Yp)T p

Yi = (Yi1, … , Yip)T i = 1, … , n
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MULTIVARIATE NORMAL DISTRIBUTION

 follows a multivariate normal distribution, that is, , if

where  denotes the determinant of .

 is the  mean vector, that is, 

.

 is the  positive definite and symmetric covariance matrix,

that is, , where  denotes the covariance between  and .

Note that  may be linearly dependent depending on the

structure of , which characterizes association between them.

For each , .

Y Y ∼ Np(μ, Σ)

f(y) = (2π)− |Σ|−  exp{− (y − μ)T Σ−1(y − μ)} ,
p

2

1

2
1

2

|Σ| A

μ p × 1

μ = E[Y ] = {E[Y1], … ,E[Yp]} = (μ1, … , μp)T

Σ p × p

Σ = {σjk} σjk Yj Yk

Y1, … , Yp

Σ

j = 1, … , p Yj ∼ N (μj, σjj)
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BIVARIATE NORMAL DISTRIBUTION

In the bivariate case, we have

and .

The correlation between  and  is defined as

.

Correlation coefficient is free of the measurement units.

Y = (
Y1

Y2
) ∼ N2 [μ = (

μ1

μ2

) , Σ = (
σ11 = σ2

1 σ12

σ21 σ22 = σ2
2

)] ,

σ12 = σ21 = Cov[Y1, Y2]

Y1 Y2

ρ1,2 = = .
Cov[Y1, Y2]

√Var[Y1]√Var[Y2]

σ12

σ1σ2

−1 ≤ ρ1,2 ≤ 1
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BACK TO THE MULTIVARIATE NORMAL

There are many special properties of the multivariate normal as we will
see as we continue to work with the distribution.

First, dependence between any  and  does not depend on the other 

 variables.

Second, while generally, independence implies zero covariance,
for the normal family, the converse is also true. That is, independence
implies zero covariance.

Thus, the covariance  carries a lot of information about marginal
relationships, especially marginal independence.

If , that is, , then

holds for any matrix square root  of , that is,  (see Cholesky
decomposition).

Yj Yk

p − 2

Σ

ϵ = (ϵ1, … , ϵp) ∼ Np(0, Ip) ϵ1, … , ϵp
iid
∼ N (0, 1)

Y = μ + Aϵ ⇒  Y ∼ Np(μ, Σ)

A Σ AAT = Σ
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CONDITIONAL DISTRIBUTIONS

Partition  as

where

 and  are , and  and  are ;

 is , and  is , with .

Then, it turns out that

That is, the conditional distribution of  given  is also normal!

Marginal distributions are once again normal, that is,

Y = (Y1, … , Yp)T

Y = (
Y1

Y2
) ∼ Np [(

μ1

μ2

) ,(
Σ11 Σ12

Σ21 Σ22
)] ,

Y1 μ1 q × 1 Y2 μ2 (p − q) × 1

Σ11 q × q Σ22 (p − q) × (p − q) Σ22 > 0

Y1|Y2 = y2 ∼ Nq (μ1 + Σ12Σ−1
22 (y2 − μ2), Σ11 − Σ12Σ−1

22 Σ21) .

Y1 Y2

Y1 ∼ Nq (μ1, Σ11) ;    Y2 ∼ Np−q (μ2, Σ22) .

10 / 12



CONDITIONAL DISTRIBUTIONS

In the bivariate normal case with

we have

which can also be written as

Y = (
Y1

Y2
) ∼ N2 [μ = (

μ1

μ2

) , Σ = (
σ11 = σ2

1 σ12

σ21 σ22 = σ2
2

)] ,

Y1|Y2 = y2 ∼ N (μ1 + (y2 − μ2), σ1 − ) .
σ12

σ2

σ2
12

σ2

Y1|Y2 = y2 ∼ N (μ1 + ρ(y2 − μ2), (1 − ρ2)σ2
1) .

σ1

σ2
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WORKING WITH NORMAL DISTRIBUTIONS

Three real (univariate) random quantities ,  and  have a joint normal

distribution given by .

Suppose

 independently of , for some known variance ;

 for some known parameter , and known variance

; and

, with some known mean , and known variance 

.

What is

? ?

? ?

To be done on the board.

x y z

p(x, y, z) = p(y|x)p(x|z)p(z)

p(y|x) = N (x, w) z w

p(x|z) = N (θz, v) θ

v

p(z) = N (m, M) m

M

p(x) p(y)

p(x|y) p(z|x)
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