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ANNOUNCEMENTS

Homework 4 due tomorrow.

OUTLINE

Categorical data

Dirichlet distribution

Conjugacy
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CATEGORICAL DATA (UNIVARIATE)
Suppose

;

 for each ; and

.

Then the pmf of  is

We say  has a multinomial distribution with sample size 1, or a
categorical distribution.

Write as  or .

Clearly, this is just an extension of the Bernoulli distribution.

Y ∈ {1, … , d}

Pr(Y = j) = θj j = 1, … , d

θ = (θ1, … , θd)

Y

Pr[Y = j|θ] =
d

∏
j=1

θ
1[Y=j]

j
.

Y

Y |θ ∼ Multinomial(1, θ) Y |θ ∼ Categorical(θ)
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DIRICHLET DISTRIBUTION

Since the elements of the probability vector  must always sum to one,
the support is often called a simplex.

A conjugate prior for categorical/multinomial data is the Dirichlet
distribution.

A random variable  has a Dirichlet distribution with parameter , if

where , and

We write this as .

The Dirichlet distribution is a multivariate generalization of the beta
distribution.

θ

θ α

p[θ|α] =
d

∏
j=1

θ
αj−1

j ,    αj > 0  for all  j = 1, … , d.
Γ(∑d

j=1 αj)

∏d

j=1 Γ(αj)

α = (α1, … ,αd)

d

∑
j=1

θj = 1,   θj ≥ 0  for all  j = 1, … , d.

θ ∼ Dirichlet(α) = Dirichlet(α1, … ,αd)
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DIRICHLET DISTRIBUTION

Write

Then we can re-write the pdf slightly as

Properties:

α0 =
d

∑
j=1

αj   and   α⋆
j

= .
αj

α0

p[θ|α] =
d

∏
j=1

θ
αj−1

j
,    αj > 0  for all  j = 1, … , d.

Γ (α0)

∏d

j=1 Γ(αj)

E[θj] = α⋆
j
;

Mode[θj] = ;
αj − 1

α0 − d

Var[θj] = = ;
α⋆
j
(1 − α⋆

j
)

α0 + 1

E[θj](1 − E[θj])

α0 + 1

Cov[θj, θk] = = .
α⋆
jα

⋆
k

α0 + 1

E[θj]E[θk]

α0 + 1

5 / 18



DIRICHLET EXAMPLES

Dirichlet(1, 1, 1)
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DIRICHLET EXAMPLES

Dirichlet(10, 10, 10)
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DIRICHLET EXAMPLES

Dirichlet(10, 10, 10)
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DIRICHLET EXAMPLES

Dirichlet(1, 10, 1)
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DIRICHLET EXAMPLES

Dirichlet(50, 100, 10)
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LIKELIHOOD

Let .

Recall

Then,

where  is just the number of individuals in category .

Maximum likelihood estimate of  is

Yi, … ,Yn|θ ∼ Categorical(θ)

Pr[Yi = j|θ] =
d

∏
j=1

θ
1[Yi=j]

j
.

L[Y ; θ] =
n

∏
i=1

d

∏
j=1

θ
1[Yi=j]

j
=

d

∏
j=1

θ
∑

n

i=1 1[Yi=j]

j
=

d

∏
j=1

θ
nj

j

nj j

θj

θ̂ j = ,   j = 1, … , d
nj

n
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POSTERIOR

Set .

Posterior expectation:

π(θ) = Dirichlet(α1, … ,αd)

π(θ|Y ) ∝ L[Y ; θ]π[θ]

∝
d

∏
j=1

θ
nj

j

d

∏
j=1

θ
αj−1

j

∝
d

∏
j=1

θ
αj+nj−1

j

= Dirichlet(α1 + n1, … ,αd + nd)

E[θj|Y ] = .
αj + nj

∑d
l=1(αl + nl)
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COMBINING INFORMATION

For the prior, we have

We can think of

 as being our "prior guess" about , and

 as being our "prior sample size".

We can then rewrite the prior as .

E[θj] =
αj

∑d
j=1 αj

θ0j = E[θj] θj

n0 = ∑d
j=1 αj

π(θ) = Dirichlet(n0θ01, … ,n0θ0d)
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COMBINING INFORMATION

We can write the posterior expectation as:

since MLE is

Once again, we can express our posterior expectation as a weighted
average of the prior expectation and MLE.

We can also extend the Dirichlet-multinomial model to more variables
(contingency tables).

E[θj|Y ] =

= +

= +

= θ0j + θ̂ j.

αj + nj

∑d
l=1(αl + nl)

αj

∑d

l=1 αl +∑d

l=1 nl

nj

∑d

l=1 αl +∑d

l=1 nl

n0θ0j

n0 + n

nθ̂ j

n0 + n
n0

n0 + n

n

n0 + n

θ̂ j =
nj

n
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EXAMPLE: PRE-ELECTION POLLING

Fox News Nov 3-6 pre-election survey of 1295 likely voters for the 2016
election.

For those interested, FiveThirtyEight is an interesting source for pre-
election polls.

Out of 1295 respondents, 622 indicated support for Clinton, 570 for
Trump, and the remaining 103 for other candidates or no opinion.

Drawing inference from pre-election polls is way more complicated and
nuanced that this. We only use the data here for this simple illustration.

Assuming no other information on the respondents, we can assume
simple random sampling and use a multinomial distribution with
parameter , the proportion, in the survey population, of

Clinton supporters, Trump supporters and other candidates or no
opinion.

θ = (θ1, θ2, θ3)
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https://projects.fivethirtyeight.com/


EXAMPLE: PRE-ELECTION POLLING

With a noninformative uniform prior, we have .

The resulting posterior is 
.

Suppose we wish to compare the proportion of people who would vote
for Trump versus Clinton, we could examine the posterior distribution of 

.

We can even compute the probability .

π(θ) = Dirichlet(1, 1, 1)

Dirichlet(1 + n1, 1 + n2, 1 + n3) = Dirichlet(623, 571, 104)

θ1 − θ2

Pr(θ1 > θ2|Y )
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EXAMPLE: PRE-ELECTION POLLING

#library(gtools)
PostSamples <- rdirichlet(10000, alpha=c(623,571,104))
#dim(PostSamples)
hist((PostSamples[,1] - PostSamples[,2]),col=rainbow(20),xlab=expression(theta[1]-theta[2])
     ylab="Posterior Density",freq=F,breaks=50,
     main=expression(paste("Posterior density of ",theta[1]-theta[2])))
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EXAMPLE: PRE-ELECTION POLLING

Posterior probability that Clinton had more support than Trump in the
survey population, that is, , is

  #library(gtools)
  mean(PostSamples[,1] > PostSamples[,2])

  ## [1] 0.9345

Once again, this is just a simple illustration with a very small subset of the
2016 pre-election polling data.

Inference for pre-election polls is way more complex and nuanced that
this.

Pr(θ1 > θ2|Y )
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