
GIBBS SAMPLING CONTʼD

DR. OLANREWAJU MICHAEL AKANDE

FEB 7, 2020

1 / 38

ANNOUNCEMENTS

Homework 4 now online.

Quiz I next Wednesday, Feb 12.

Survey I for the course coming soon.

OUTLINE

Gibbs sampler for normal model

Inference for Pygmalion data

MCMC diagnostics

Chat on Quiz I

2 / 38

RECAP OF NORMAL MODEL

Suppose we have a normal model as our sampling distribution and wish
to specify our uncertainty about as independent of .

That is, we want .

For example,

When is not proportional to , the marginal density of is not a

gamma density (or a density we can easily sample from).

We can't sample from the joint posterior like we are used to, we need to
do Gibbs sampling.

μ τ

π(μ, τ) = π(μ)π(τ)

μ ∼ N (μ0, σ
2
0) .

τ ∼ Gamma(,) .
ν0

2

ν0

2τ0

σ
2
0

1

τ
τ

3 / 38

FULL CONDITIONALS

That is, we need

where

; and

.

μ|Y , τ ∼ N (μn, τ −1
n),

μn =
+ nτȳ

μ0

σ2
0

+ nτ1

σ2
0

τn = + nτ1

σ2
0

4 / 38

FULL CONDITIONALS

and

where

τ|μ, Y ∼ Gamma(,) ,
νn

2

νnσ2
n(μ)

2

νn = ν0 + n

σ2
n(μ) = [+

n

∑
i=1

(yi − μ)2] = [+ ns2
n(μ)]

with s2
n(μ) =

n

∑
i=1

(yi − μ)2 ⇒ ns2
n(μ) = (n − 1)s2 + n(ȳ − μ)2

1

νn

ν0

τ0

1

νn

ν0

τ0

1

n

5 / 38

RECALL THE PYGMALION DATA

For now, let's focus only on the accelerated group for the Pygmalion
data.

Data for accelerated group (A): 20, 10, 19, 15, 9, 18.

Summary statistics: ; .

Suppose we assume these improvement scores are normal with mean

and variance .

Suppose for , we use a prior, and for we use a

prior.

Matching with

we have: , , and .

ȳA = 15.2 sA = 4.71

μ
1
τ

μ N (0, 100) τ Ga(, 50)1
2

μ ∼ N (μ0, σ2
0) .

τ ∼ Gamma(,) ,
ν0

2

ν0

2τ0

μ0 = 0 σ2
0 = 100 ν0 = 1 τ0 = 1/100

6 / 38

GIBBS SAMPLING FOR PYGMALION DATA

y <- c(20,10,19,15,9,18) #data
y_bar <- mean(y); s2 <- var(y); n <- length(y) #sample statistics you'll need

S <- 10000 # number of samples to draw

PHI <- matrix(nrow=S,ncol=3); #matrix to save results
colnames(PHI) <- c("mu","tau","sigma2")
PHI[1,] <- phi <- c(y_bar,1/s2,s2) #starting values are MLEs

mu0 <- 0; sigma02 <- 100; nu0 <- 1; tau0 <- 1/100 #hyperparameters

Gibbs sampler
set.seed(1234) #to replicate results exactly
for(s in 2:S) {
#first, draw new mu
taun <- 1/sigma02 + n*phi[2]
mun <- (mu0/sigma02 + n*y_bar*phi[2])/taun
phi[1] <- rnorm(1,mun,sqrt(1/taun))

#now, draw new tau/sigma2
nun <- nu0+n
#trick to speed up calculation of sum(y_i-\mu)^2
s2nmu <- (nu0/tau0 + (n-1)*s2 + n*(y_bar-phi[1])^2)/nun
phi[2] <- rgamma(1,nun/2,nun*s2nmu/2)
phi[3] <- 1/phi[2] #save sigma2

#save the current joint draws
PHI[s,] <- phi
}
End of Gibbs sampler

7 / 38

PYGMALION DATA: MEAN

plot(PHI[,1],ylab=expression(mu),xlab="Iteration",
 main=expression(paste("Sampled values of ",mu)))
abline(a=mean(PHI[,1]),b=0,col="red4",lwd=2)

8 / 38

PYGMALION DATA: MEAN

hist(PHI[,1],col=rainbow(20),xlab=expression(mu),ylab="Density",freq=F,breaks=50,
 main=expression(paste("Posterior density of ",mu)))

9 / 38

PYGMALION DATA: MEAN

round(mean(PHI[,1]),3)

[1] 13.99

round(quantile(PHI[,1],c(0.025,0.5,0.975)),3)

2.5% 50% 97.5%
7.520 14.217 19.277

Posterior summaries for :

Posterior mean .

Posterior median .

95% credible interval .

For context, , and we used a prior for .

μ

= 14

= 14.22

= (7.52, 19.28)

ȳA = 15.2 N (0, 100) μ

10 / 38

PYGMALION DATA: PRECISION

plot(PHI[,2],ylab=expression(tau),xlab="Iteration",
 main=expression(paste("Sampled values of ",tau)))
abline(a=mean(PHI[,2]),b=0,col="red4",lwd=2)

11 / 38

PYGMALION DATA: PRECISION

hist(PHI[,2],col=rainbow(50),xlab=expression(tau),ylab="Density",freq=F,breaks=50,
 main=expression(paste("Posterior density of ",tau)))

12 / 38

PYGMALION DATA: PRECISION

round(mean(PHI[,2]),3)

[1] 0.028

round(quantile(PHI[,2],c(0.025,0.5,0.975)),3)

2.5% 50% 97.5%
0.006 0.025 0.069

Posterior summaries for :

Posterior mean .

Posterior median .

95% credible interval .

For context, , which means sample precision .

Also, we used a prior for .

τ

= 0.028

= 0.025

= (0.006, 0.069)

sA = 4.71 = 1/4.712 = 0.045

Ga(, 50)1
2

τ

13 / 38

PYGMALION DATA: VARIANCE

plot(PHI[,3],ylab=expression(sigma^2),xlab="Iteration",
 main=expression(paste("Sampled values of ",sigma^2)))
abline(a=mean(PHI[,3]),b=0,col="red4",lwd=2)

14 / 38

PYGMALION DATA: VARIANCE

hist(PHI[,3],col=rainbow(10),xlab=expression(sigma^2),ylab="Density",freq=F,breaks=100,
 main=expression(paste("Posterior density of ",sigma^2)))

15 / 38

PYGMALION DATA: VARIANCE

round(mean(PHI[,3]),2)

[1] 53.34

round(quantile(PHI[,3],c(0.025,0.5,0.975)),2)

2.5% 50% 97.5%
14.52 39.60 174.11

Posterior summaries for :

Posterior mean .

Posterior median .

95% credible interval .

For context, , which means sample variance . Again,
we used a prior for .

σ
2

= 53.34

= 39.60

= (14.52, 174.11)

sA = 4.71 4.712 = 22.18
Ga(, 50)1

2
τ

16 / 38

SOME TERMINOLOGY

Convergence: bypassing initial drift in the samples towards a stationary
distribution.

Burn-in: samples at start of the chain that are discarded to allow
convergence.

Trace plot: plot of sampled values of a parameter vs iterations.

Slow mixing: tendency for high autocorrelation in the samples.

Thinning: practice of collecting every th iteration to reduce
autocorrelation. It gets you a little closer to iid draws and saves memory
(you don't store all draws), but unless memory is a major issue or
autocorrelation is very high, it is not generally advantageous to thin the
chain.

k

17 / 38

BURN-IN
Because convergence often occurs regardless of our starting point (in not-
too-complex problems at least), we can usually pick any reasonable
values in the parameter space as a starting point.

The time it takes for the chain to converge may vary depending on how
close the starting values are to a high probability region of the posterior.

Generally, we throw out a certain number of the first draws, known as
the burn-in, as an attempt to make our draws closer to the stationary
distribution and less dependent on any single set of starting values.

However, we don't know exactly when convergence occurs, so it is not
always clear how much burn-in we would need.

18 / 38

EXAMPLE - TRACE PLOT WITH BAD MIXING

Trace plot: plot of sampled values of a parameter vs iterations.

19 / 38

POOR MIXING

Exhibits "snaking" behavior in trace plot with cyclic local trends in the
mean.

Poor mixing in the Gibbs sampler caused by high posterior correlation in
the parameters.

Decreases efficiency & many more samples need to be collected to
maintain low Monte Carlo error in posterior summaries.

For very poor mixing chain, may even need millions of iterations.

Routinely examine trace plots!

20 / 38

EXAMPLE - TRACE PLOT WITH GOOD MIXING

21 / 38

CONVERGENCE DIAGNOSTICS

Diagnostics available to help decide on number of burn-in & collected
samples.

Note: no definitive tests of convergence & you should check
convergence of all parameters.

With "experience", visual inspection of trace plots perhaps most useful
approach.

There are a number of useful automated tests in R.

22 / 38

DIAGNOSTICS IN R
The most popular package for MCMC diagnostics in R is coda.

coda uses a special MCMC format so you must always convert your
posterior matrix into an MCMC object.

Continuing with the posterior samples for the Pygmalion study, we have
the following in R.

#library(coda)
phi.mcmc <- mcmc(PHI,start=1) #no burn-in (simple problem!)

23 / 38

DIAGNOSTICS IN R
summary(phi.mcmc)

Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
mu 13.98961 2.94748 0.0294748 0.0341435
tau 0.02839 0.01646 0.0001646 0.0001855
sigma2 53.34388 53.27616 0.5327616 0.6502608

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
mu 7.519819 12.36326 14.21682 15.84203 19.27701
tau 0.005744 0.01626 0.02526 0.03726 0.06886
sigma2 14.522591 26.83933 39.59569 61.49382 174.10833

The naive SE is the standard error of the mean, which captures
simulation error of the mean rather than the posterior uncertainty.

The time-series SE adjusts the naive SE for autocorrelation.

24 / 38

EFFECTIVE SAMPLE SIZE

The effective sample size translates the number of MCMC samples into
an equivalent number of independent samples.

It is defined as

where is the sample size and is the lag autocorrelation.

For our data, we have

effectiveSize(phi.mcmc)

mu tau sigma2
7452.197 7877.721 6712.600

So our 10,000 samples are equivalent to 7452 independent samples for
, 7878 independent samples for , and 6713 independent samples for

.

S

ESS = ,
S

1 + 2∑k ρk

S ρk k

μ τ

σ2

25 / 38

TRACE PLOT FOR MEAN

plot(phi.mcmc[,"mu"])

Looks great!

26 / 38

TRACE PLOT FOR PRECISION

plot(phi.mcmc[,"tau"])

Looks great!

27 / 38

TRACE PLOT FOR VARIANCE

plot(phi.mcmc[,"sigma2"])

We do see a few wacky samples that we did not see with , due to the scale.
Generally, still looks great!

τ

28 / 38

AUTOCORRELATION

Another way to evaluate convergence is to look at the autocorrelation
between draws of our Markov chain.

The lag autocorrelation, , is the correlation between each draw and

its th lag, defined as

We expect the autocorrelation to decrease as increases.

If autocorrelation remains high as increases, we have slow mixing due
to the inability of the sampler to move around the space well.

k ρk

k

ρk = .
∑

S−k

s=1 (θs − θ̄)(θs+k − θ̄)

∑
S−k

s=1 (θs − θ̄)2

k

k

29 / 38

AUTOCORRELATION FOR MEAN

autocorr.plot(phi.mcmc[,"mu"])

This looks great! Look how quickly autocorrelation goes to 0.

30 / 38

AUTOCORRELATION FOR PRECISION

autocorr.plot(phi.mcmc[,"tau"])

Also great!

31 / 38

AUTOCORRELATION FOR VARIANCE

autocorr.plot(phi.mcmc[,"sigma2"])

Also great!

32 / 38

GELMAN AND RUBIN STATISTIC

Andrew Gelman and Don Rubin suggested a diagnostic statistic based on
taking separate sets of Gibbs samples (multiple chains) with dispersed
initial values to test convergence.

The algorithm proceeds as follows.

Run m > 2 chains of length 2S from overdispersed starting values.

Discard the first S draws in each chain.

Calculate the within-chain and between-chain variance.

Calculate the estimated variance of the parameter as a weighted sum
of the within-chain and between-chain variance.

Calculate the potential scale reduction factor

where is the weighted sum of the within-chain and between-chain

variance and is the mean of the variances of each chain (average
within-chain variance).

R̂ = √ ,
^Var(θ)

W

^Var(θ)

W

33 / 38

GEWEKE STATISTIC

Geweke proposed taking two non-overlapping parts of a single Markov
chain (usually the first 10% and the last 50%) and comparing the mean
of both parts, using a difference of means test.

The null hypothesis would be that the two parts of the chain are from the
same distribution.

The test statistic is a z-score with standard errors adjusted for
autocorrelation, and if the p-value is significant for a variable, you need
more draws.

The output is the z-score itself (not the p-value).

geweke.diag(phi.mcmc)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

mu tau sigma2
0.9521 2.0088 -1.9533

34 / 38

PRACTICAL ADVICE ON DIAGNOSTICS

There are more tests we can use: Raftery and Lewis diagnostic,
Heidelberger and Welch, etc.

The Gelman-Rubin approach is quite appealing in using multiple chains

Geweke (and Heidelberger and Welch) sometimes reject even when the
trace plots look good.

Overly sensitive to minor departures from stationarity that do not impact
inferences.

Sometimes this can be solved with more iterations. Otherwise, you may
want to try multiple chains.

Most common method of assessing convergence is visual examination of
trace plots.

CAUTION: diagnostics cannot guarantee that a chain has converged,
but they can indicate it has not converged.

35 / 38

HPD INTERVAL FOR PYGMALION DATA

#library(hdrcde)
hdr.den(PHI[,1],prob=95,main="95% HPD region", xlab=expression(mu),
 ylab=expression(paste(pi,"(", mu, "|y)")))

36 / 38

HPD INTERVAL FOR PYGMALION DATA

hdr.den(PHI[,2],prob=95,main="95% HPD region", xlab=expression(tau),
 ylab=expression(paste(pi,"(", tau, "|y)")))

37 / 38

HPD INTERVAL FOR PYGMALION DATA

hdr(PHI[,1],prob=95)$hdr

[,1] [,2]
95% 8.080022 19.87699

hdr(PHI[,2],prob=95)$hdr

[,1] [,2]
95% -0.0006954123 0.06023567

We can compare the HPD intervals to the equal tailed credible intervals.

quantile(PHI[,1],c(0.025,0.975))

2.5% 97.5%
7.519819 19.277013

quantile(PHI[,2],c(0.025,0.975))

2.5% 97.5%
0.005743552 0.068858238

Intervals are closer for (symmetric density) compared to (not symmetric).μ τ

38 / 38

