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ANNOUNCEMENTS

Homework 3 due tomorrow.

OUTLINE

Non-conjugate priors

Full conditionals

Gibbs sampling

A simple example: bivariate normal

In-class exercise
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BAYESIAN INFERENCE (CONJUGACY RECAP)
As we've seen so far, Bayesian inference is based on posterior
distributions, that is,

Good news: we have the numerator in this expression.

Bad news: the denominator is typically not available (may involve high
dimensional integral)!

How have we been getting by? Conjugacy! For conjugate priors, the
posterior distribution of  is available analytically.

What if a conjugate prior does not represent our prior information well,
or we have a more complex model, and our posterior is no longer in a
convenient distributional form?

p(θ|y) = =
p(θ)L(y; θ)

∫
Θ

p(
~
θ)L(y;

~
θ)d

~
θ

p(θ)L(y; θ)

L(y)

θ
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SOME CONJUGATE MODELS

We've already seen the following conjugate models.

Prior Likelihood Posterior

beta binomial beta

gamma Poisson gamma

gamma exponential gamma

normal-gamma normal normal-gamma

Here are a few more we have not covered yet.

Prior Likelihood Posterior

beta negative-binomial beta

beta geometric beta

Dirichlet multinomial Dirichlet

Clearly, we cannot restrict ourselves to conjugate models only.
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BACK TO THE NORMAL MODEL

For conjugacy in the normal model, we had

Suppose we wish to specify our uncertainty about  as independent of ,

that is, we want . For example,

When  is not proportional to , the marginal density of  is not a

gamma density (or a density we can easily sample from).

Side note: for conjugacy, the joint posterior should also be a product of
two independent Normal and Gamma densities in  and  respectively.

μ|τ ∼ N (μ0, ) .

τ   ∼ Gamma( , )
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NON-CONJUGATE PRIORS

In general, conjugate priors are not available for generalized linear
models (GLMs) other than the normal linear model.

One can potentially rely on an asymptotic normal approximation.

As , the posterior distribution is normal centered on MLE.

However, even for moderate sample sizes, asymptotic approximations
may be inaccurate.

In logistic regression for example, for rare outcomes or rare binary
exposures, posterior can be highly skewed.

Appealing to avoid any reliance on large sample assumptions and base
inferences on exact posterior.

n → ∞
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NON-CONJUGATE PRIORS

Even though we may not be able to sample from the marginal posterior
of a particular parameter when using a non-conjugate prior, sometimes,
we may still be able to sample from conditional distributions of those
parameters given all other parameters and the data.

These conditional distributions, known as full conditionals, will be very
important for us.

In our normal example with

even though we cannot sample easily from , turns out we will be able

to sample from . That is the full conditional for .

By the way, note that we already know the full conditional for , i.e., 

 (last two classes).

μ ∼ N (μ0, σ2
0) .

τ   ∼ Gamma( , ) ,
ν0

2

ν0

2τ0

τ|Y

τ|μ, Y τ

μ

μ|τ, Y
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FULL CONDITIONAL DISTRIBUTIONS

Goal: try to take advantage of those full conditional distributions (without
sampling directly from the marginal posteriors) to obtain samples from
the said marginal posteriors.

In our example, with , we have

where

; and

.

Review results from previous two classes if you are not sure why this
holds.

Let's see if we can figure out the other full conditional .

π(μ) = N (μ0, σ2
0)

μ|Y , τ ∼ N (μn, τ −1
n ),

μn =
+ nτȳ

μ0

σ2
0

+ nτ1

σ2
0

τn = + nτ1

σ2
0

τ|μ, Y
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FULL CONDITIONAL DISTRIBUTIONS

π(τ|μ, Y ) = =

            

=

            

∝ L(y; μ, τ)π(τ)

            

∝ τ  exp {− τ

n

∑
i=1

(yi − μ)2}


∝ L(Y ;μ,τ)

× τ
−1

exp{− }


∝ π(τ)

            

= τ
−1

 exp {− τ [ +
n

∑
i=1

(yi − μ)2]}


Gamma Kernel
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FULL CONDITIONAL DISTRIBUTIONS

where

π(τ|μ, Y ) ∝ τ
−1

 exp {− τ [ +
n

∑
i=1

(yi − μ)2]}


Gamma Kernel
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ITERATIVE SCHEME

Now we have two full conditional distributions but what we really need is
to sample from .

Actually, if we could sample from , we already know that the

draws for  and  will be from the two marginal posterior distributions.

So, we just need a scheme to sample from .

Suppose we had a single sample, say  from the marginal posterior
distribution . Then we could sample

This is what we did in the last class, so that the pair  is a

sample from the joint posterior .

 can be considered a sample from the marginal distribution of ,

which again means we can use it to sample

and so forth.

π(τ|Y )

π(μ, τ|Y )

μ τ

π(μ, τ|Y )

τ (1)

π(τ|Y )

μ(1) ∼ p(μ|τ (1), Y ).

{μ(1), τ (1)}

π(μ, τ|Y )

⇒  μ(1) μ

τ (2) ∼ p(τ|μ(1), Y ),
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GIBBS SAMPLING

So, we can use two full conditional distributions to generate
samples from the joint distribution, once we have a starting value .

Formally, this sampling scheme is known as Gibbs sampling.

Purpose: Draw from a joint distribution, say .

Method: Iterative conditional sampling

Draw 

Draw 

Purpose: Full conditional distributions have known forms, with
sampling from the full conditional distributions fairly easy.

More generally, we can use this method to generate samples of 
, the vector of  parameters of interest, from the joint

density.

τ (1)

p(μ, τ|Y )

τ (1) ∼ p(τ|μ(0), Y )

μ(1) ∼ p(μ|τ (1), Y )

θ = (θ1, … , θp) p
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GIBBS SAMPLING

Procedure:

Start with initial value .

For iterations ,

1. Sample  from the conditional posterior distribution

2. Sample  from the conditional posterior distribution

3. Similarly, sample  from the conditional posterior

distributions given current values of other parameters.

This generates a dependent sequence of parameter values.

θ(0) = (θ
(0)
1 , … , θ

(0)
p )

t = 1, … , T

θ
(t)
1

π(θ1|θ2 = θ
(t−1)

2 , … , θp = θ
(t−1)
p , Y )

θ
(t)
2

π(θ2|θ1 = θ
(t)

1 , θ3 = θ
(t−1)

3 , … , θp = θ
(t−1)
p , Y )

θ
(t)
3 , … , θ

(t)
p
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MCMC
Gibbs sampling is one of several flavors of Markov chain Monte Carlo
(MCMC).

Markov chain: a stochastic process in which future states are
independent of past states conditional on the present state.

Monte Carlo: simulation.

MCMC provides an approach for generating samples from posterior
distributions.

From these samples, we can obtain summaries (including summaries of
functions) of the posterior distribution for , our parameter of interest.θ
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HOW DOES MCMC WORK?
Let  denote the value of the  vector of

parameters at iteration t.

Let  be an initial value used to start the chain (should not be

sensitive).

MCMC generates  from a distribution that depends on the data and
potentially on , but not on .

This results in a Markov chain with stationary distribution 

under some conditions on the sampling distribution.

The theory of Markov Chains (structure, convergence, reversibility,
detailed balance, stationarity, etc) is well beyond the scope of this course
so we will not dive into it.

If you are interested, consider taking STA 531/831 or courses on
stochastic process.

θ(t) = (θ
(t)
1 , … , θ

(t)
p ) p × 1

θ(0)

θ(t)

θ(t−1) θ(1), … , θ(t−2)

π(θ|Y )

15 / 27



PROPERTIES

Note: Our Markov chain is a collection of draws of  that are (slightly
we hope!) dependent on the previous draw.

The chain will wander around our parameter space, only remembering
where it had been in the last draw.

We want to have our MCMC sample size, , big enough so that we can

Move out of areas of low probability into regions of high probability
(convergence)

Move between high probability regions (good mixing)

Know our Markov chain is stationary in time (the distribution of
samples is the same for all samples, regardless of location in the
chain)

At the start of the sampling, the samples are not from the posterior
distribution. It is necessary to discard the initial samples as a burn-in to
allow convergence. We'll talk more about that in the next class.

θ

T
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DIFFERENT FLAVORS OF MCMC
The most commonly used MCMC algorithms are:

Metropolis sampling (Metropolis et al., 1953).

Metropolis-Hastings (MH) (Hastings, 1970).

Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith, 1990).

Overview of Gibbs - Casella & George (1992, The American Statistician,
46, 167-174). the first two

Overview of MH - Chib & Greenberg (1995, The American Statistician).

We will get to Metropolis and Metropolis-Hastings later in the course.
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EXAMPLE: BIVARIATE NORMAL

Consider

where  is known (and is the correlation between  and ).

We will review details of the multivariate normal distribution very soon
but for now, let's use this example to explore Gibbs sampling.

For this density, turns out that we have

and

While we can easily sample directly from this distribution (using the
mvtnorm or MASS packages in R), let's instead use the Gibbs sampler to draw
samples from it.

(
θ1

θ2
) ∼ N [(

0

0
) ,(

1 ρ

ρ 1
)]

ρ θ1 θ2

θ1|θ2 ∼ N (ρθ2, 1 − ρ2)

θ2|θ1 ∼ N (ρθ1, 1 − ρ2)
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BIVARIATE NORMAL

First, a few examples of the bivariate normal distribution.

( θ1

θ2

) ∼ N [( 0

0
) ,( 1 0

0 1
)]
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BIVARIATE NORMAL

( θ1

θ2

) ∼ N [( 0

0
) ,( 1 0

0 1
)]
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BIVARIATE NORMAL

( θ1

θ2

) ∼ N [( 0

2
) ,( 1 0.5

0.5 2
)]
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BIVARIATE NORMAL

( θ1

θ2

) ∼ N [( 0

2
) ,( 1 0.5

0.5 2
)]
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BIVARIATE NORMAL

( θ1

θ2

) ∼ N [( 1

−1
) ,( 1 0.9

0.9 0.5
)]
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BIVARIATE NORMAL

( θ1

θ2

) ∼ N [( 1

−1
) ,( 1 0.9

0.9 0.5
)]

24 / 27



BACK TO THE EXAMPLE

Again, we have

Here's a code to do Gibbs sampling using those full conditionals:

rho <- #set correlation
S <- #set number of MCMC samples
thetamat <- matrix(0,nrow=S,ncol=2)
theta <- c(10,10) #initialize values of theta
for (s in 1:S) {
theta[1] <- rnorm(1,rho*theta[2],sqrt(1-rho^2)) #sample theta1
theta[2] <- rnorm(1,rho*theta[1],sqrt(1-rho^2)) #sample theta2
thetamat[s,] <- theta
}

Here's a code to do sample directly instead:

library(mvtnorm)
rho <- #set correlation; no need to set again once you've used previous code
S <- #set number of MCMC samples; no need to set again once you've used previous code
Mu <- c(0,0)
Sigma <- matrix(c(1,rho,rho,1),ncol=2)
thetamat_direct <- rmvnorm(S, mean = Mu,sigma = Sigma)

θ1|θ2 ∼ N (ρθ2, 1 − ρ2) ;     θ2|θ1 ∼ N (ρθ1, 1 − ρ2)
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PARTICIPATION EXERCISE

You will work in groups of three. Work with the three students closest to
you.

For  and , do the following:

1. Generate  samples using the two methods.

2. Make a scatter plot of the samples from each method (plot the
samples from the Gibbs sampler first) and compare them.

How do the results differ between the two methods for the different
combinations of  and ?

Discuss within your teams, document your team findings and submit.

You can have one person document the findings but make sure to write
the name of all three members at the top of the sheet.

S ∈ {50, 250, 500} ρ ∈ {0.1, 0.5, 0.95}

S

S ρ
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MORE CODE

See how the chain actually evolves with an overlay on the true density:

rho <- #set correlation
Sigma <- matrix(c(1,rho,rho,1),ncol=2); Mu <- c(0,0)
x.points <- seq(-3,3,length.out=100)
y.points <- x.points
z <- matrix(0,nrow=100,ncol=100)
for (i in 1:100) {
  for (j in 1:100) {
    z[i,j] <- dmvnorm(c(x.points[i],y.points[j]),mean=Mu,sigma=Sigma)
  }
}
contour(x.points,y.points,z,xlim=c(-3,10),ylim=c(-3,10),"orange2",
        xlab=expression(theta[1]),ylab=expression(theta[2]))

S <- #set number of MCMC samples;
thetamat <- matrix(0,nrow=S,ncol=2)
theta <- c(10,10)
points(x=theta[1],y=theta[2],col="black",pch=2)
for (s in 1:S) {
  theta[1] <- rnorm(1,rho*theta[2],sqrt(1-rho^2))
  theta[2] <- rnorm(1,rho*theta[1],sqrt(1-rho^2))
  thetamat[s,] <- theta
  if(s < 20){
    points(x=theta[1],y=theta[2],col="red4",pch=16); Sys.sleep(1)
  } else {
    points(x=theta[1],y=theta[2],col="green4",pch=16); Sys.sleep(0.1)
  }
}
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