# GIBBS SAMPLING

#### DR. OLANREWAJU MICHAEL AKANDE

Feb 5, 2020



# ANNOUNCEMENTS

Homework 3 due tomorrow.

# OUTLINE

- Non-conjugate priors
- Full conditionals
- Gibbs sampling
- A simple example: bivariate normal
- In-class exercise



# BAYESIAN INFERENCE (CONJUGACY RECAP)

 As we've seen so far, Bayesian inference is based on posterior distributions, that is,

$$p( heta|y) = rac{p( heta)L(y; heta)}{\int_{\Theta} p( ilde{ heta})L(y; ilde{ heta})\mathrm{d} ilde{ heta}} = rac{p( heta)L(y; heta)}{L(y)}$$

- Good news: we have the numerator in this expression.
- Bad news: the denominator is typically not available (may involve high dimensional integral)!
- How have we been getting by? Conjugacy! For conjugate priors, the posterior distribution of θ is available analytically.
- What if a conjugate prior does not represent our prior information well, or we have a more complex model, and our posterior is no longer in a convenient distributional form?



# Some conjugate models

• We've already seen the following conjugate models.

| Prior        | Likelihood  | Posterior    |
|--------------|-------------|--------------|
| beta         | binomial    | beta         |
| gamma        | Poisson     | gamma        |
| gamma        | exponential | gamma        |
| normal-gamma | normal      | normal-gamma |

Here are a few more we have not covered yet.

| Prior     | Likelihood        | Posterior |
|-----------|-------------------|-----------|
| beta      | negative-binomial | beta      |
| beta      | geometric         | beta      |
| Dirichlet | multinomial       | Dirichlet |

STA 602L Clearly, we cannot restrict ourselves to conjugate models only.

## BACK TO THE NORMAL MODEL

For conjugacy in the normal model, we had

$$egin{aligned} \mu | au &\sim \mathcal{N}\left(\mu_0, rac{1}{\kappa_0 au}
ight). \ au &\sim ext{Gamma}\left(rac{
u_0}{2}, rac{
u_0 \sigma_0^2}{2} \end{aligned}
ight). \end{aligned}$$

 Suppose we wish to specify our uncertainty about μ as independent of τ, that is, we want π(μ, τ) = π(μ)π(τ). For example,

$$egin{aligned} \mu &\sim \mathcal{N}\left(\mu_0, \sigma_0^2
ight).\ au & \sim ext{Gamma}\left(rac{
u_0}{2}, rac{
u_0}{2 au_0}
ight). \end{aligned}$$

- When  $\sigma_0^2$  is not proportional to  $\frac{1}{\tau}$ , the marginal density of  $\tau$  is not a gamma density (or a density we can easily sample from).
- Side note: for conjugacy, the joint posterior should also be a product of two independent Normal and Gamma densities in µ and τ respectively.



# Non-conjugate priors

- In general, conjugate priors are not available for generalized linear models (GLMs) other than the normal linear model.
- One can potentially rely on an asymptotic normal approximation.
- As  $n o \infty$ , the posterior distribution is normal centered on MLE.
- However, even for moderate sample sizes, asymptotic approximations may be inaccurate.
- In logistic regression for example, for rare outcomes or rare binary exposures, posterior can be highly skewed.
- Appealing to avoid any reliance on large sample assumptions and base inferences on exact posterior.



# Non-conjugate priors

- Even though we may not be able to sample from the marginal posterior of a particular parameter when using a non-conjugate prior, sometimes, we may still be able to sample from conditional distributions of those parameters given all other parameters and the data.
- These conditional distributions, known as full conditionals, will be very important for us.
- In our normal example with

$$egin{aligned} \mu &\sim \mathcal{N}\left(\mu_0, \sigma_0^2
ight).\ au &\sim ext{Gamma}\left(rac{
u_0}{2}, rac{
u_0}{2 au_0}
ight), \end{aligned}$$

even though we cannot sample easily from  $\tau|Y$ , turns out we will be able to sample from  $\tau|\mu, Y$ . That is the full conditional for  $\tau$ .

By the way, note that we already know the full conditional for  $\mu$ , i.e.,  $\mu | \tau, Y$  (last two classes).



## Full conditional distributions

- Goal: try to take advantage of those full conditional distributions (without sampling directly from the marginal posteriors) to obtain samples from the said marginal posteriors.
- In our example, with  $\pi(\mu) = \mathcal{N}\left(\mu_0, \sigma_0^2
  ight)$ , we have

 $\mu|Y, au \sim \mathcal{N}(\mu_n, au_n^{-1}),$ 

where

• 
$$\mu_n = rac{rac{\mu_0}{\sigma_0^2} + n au ar{y}}{rac{1}{\sigma_0^2} + n au};$$
 and  
•  $au_n = rac{1}{\sigma_0^2} + n au.$ 

- Review results from previous two classes if you are not sure why this holds.
- Let's see if we can figure out the other full conditional  $\tau|\mu, Y$ .



### Full conditional distributions

$$\begin{aligned} \pi(\tau|\mu,Y) &= \frac{\Pr[\tau,\mu,Y]}{\Pr[\mu,Y]} = \frac{L(y;\mu,\tau)\pi(\mu,\tau)}{\Pr[\mu,Y]} \\ &= \frac{L(y;\mu,\tau)\pi(\mu)\pi(\tau)}{\Pr[\mu,Y]} \\ &\propto L(y;\mu,\tau)\pi(\tau) \\ &\propto \frac{\tau^{\frac{n}{2}} \exp\left\{-\frac{1}{2}\tau\sum_{i=1}^{n}(y_{i}-\mu)^{2}\right\}}{\sum_{\alpha \in L(Y;\mu,\tau)}} \times \underbrace{\frac{\nu_{0}}{2}^{-1} \exp\left\{-\frac{\tau\nu_{0}}{2\tau_{0}}\right\}}_{\propto \pi(\tau)} \\ &= \underbrace{\tau^{\frac{\nu_{0}+n}{2}-1} \exp\left\{-\frac{1}{2}\tau\left[\frac{\nu_{0}}{\tau_{0}}+\sum_{i=1}^{n}(y_{i}-\mu)^{2}\right]\right\}}_{\text{Gamma Kernel}}.\end{aligned}$$



## Full conditional distributions

$$\pi(\tau|\mu, Y) \propto \underbrace{\tau^{\frac{\nu_0 + n}{2}^{-1}} \exp\left\{-\frac{1}{2}\tau\left[\frac{\nu_0}{\tau_0} + \sum_{i=1}^n (y_i - \mu)^2\right]\right\}}_{\text{Gamma Kernel}}$$
$$= \operatorname{Gamma}\left(\frac{\nu_n}{2}, \frac{\nu_n}{2\tau_n(\mu)}\right) \quad \text{OR} \quad \operatorname{Gamma}\left(\frac{\nu_n}{2}, \frac{\nu_n \sigma_n^2(\mu)}{2}\right),$$

#### where

$$\begin{split} \nu_n &= \nu_0 + n \\ \sigma_n^2(\mu) &= \frac{1}{\nu_n} \left[ \frac{\nu_0}{\tau_0} + \sum_{i=1}^n (y_i - \mu)^2 \right] = \frac{1}{\nu_n} \left[ \frac{\nu_0}{\tau_0} + n s_n^2(\mu) \right] \\ \text{OR } \tau_n(\mu) &= \frac{\nu_n}{\left[ \frac{\nu_0}{\tau_0} + \sum_{i=1}^n (y_i - \mu)^2 \right]} = \frac{\nu_n}{\left[ \frac{\nu_0}{\tau_0} + n s_n^2(\mu) \right]}; \\ \text{with } s_n^2(\mu) &= \frac{1}{n} \sum_{i=1}^n (y_i - \mu)^2. \end{split}$$



## **TERATIVE SCHEME**

- Now we have two full conditional distributions but what we really need is to sample from  $\pi(\tau|Y)$ .
- Actually, if we could sample from π(μ, τ|Y), we already know that the draws for μ and τ will be from the two marginal posterior distributions. So, we just need a scheme to sample from π(μ, τ|Y).
- Suppose we had a single sample, say  $\tau^{(1)}$  from the marginal posterior distribution  $\pi(\tau|Y)$ . Then we could sample

#### $\mu^{(1)} \sim p(\mu | au^{(1)}, Y).$

- This is what we did in the last class, so that the pair  $\{\mu^{(1)}, \tau^{(1)}\}$  is a sample from the joint posterior  $\pi(\mu, \tau|Y)$ .
- $\Rightarrow \mu^{(1)}$  can be considered a sample from the marginal distribution of  $\mu$ , which again means we can use it to sample

 $au^{(2)} \sim p( au| \mu^{(1)}, Y),$ 



and so forth.

## GIBBS SAMPLING

- So, we can use two full conditional distributions to generate samples from the joint distribution, once we have a starting value \(\tau^{(1)}\).
- Formally, this sampling scheme is known as Gibbs sampling.
  - Purpose: Draw from a joint distribution, say  $p(\mu, \tau | Y)$ .
  - Method: Iterative conditional sampling
    - Draw  $au^{(1)} \sim p( au | \mu^{(0)}, Y)$
    - Draw  $\mu^{(1)} \sim p(\mu | au^{(1)}, Y)$
  - Purpose: Full conditional distributions have known forms, with sampling from the full conditional distributions fairly easy.
- More generally, we can use this method to generate samples of θ = (θ<sub>1</sub>,...,θ<sub>p</sub>), the vector of p parameters of interest, from the joint density.



# GIBBS SAMPLING

- Procedure:
  - Start with initial value  $\theta^{(0)} = (\theta_1^{(0)}, \dots, \theta_p^{(0)}).$
  - For iterations  $t = 1, \ldots, T$ ,

1. Sample  $\theta_1^{(t)}$  from the conditional posterior distribution

$$\pi( heta_1| heta_2= heta_2^{(t-1)},\ldots, heta_p= heta_p^{(t-1)},Y)$$

2. Sample  $\theta_2^{(t)}$  from the conditional posterior distribution

$$\pi( heta_2| heta_1= heta_1^{(t)}, heta_3= heta_3^{(t-1)},\dots, heta_p= heta_p^{(t-1)},Y)$$

- 3. Similarly, sample  $\theta_3^{(t)}, \ldots, \theta_p^{(t)}$  from the conditional posterior distributions given current values of other parameters.
- This generates a **dependent** sequence of parameter values.



# MCMC

- Gibbs sampling is one of several flavors of Markov chain Monte Carlo (MCMC).
  - Markov chain: a stochastic process in which future states are independent of past states conditional on the present state.
  - Monte Carlo: simulation.
- MCMC provides an approach for generating samples from posterior distributions.
- From these samples, we can obtain summaries (including summaries of functions) of the posterior distribution for θ, our parameter of interest.



# How does MCMC work?

- Let  $\theta^{(t)} = (\theta_1^{(t)}, \dots, \theta_p^{(t)})$  denote the value of the  $p \times 1$  vector of parameters at iteration t.
- Let  $\theta^{(0)}$  be an initial value used to start the chain (should not be sensitive).
- MCMC generates  $\theta^{(t)}$  from a distribution that depends on the data and potentially on  $\theta^{(t-1)}$ , but not on  $\theta^{(1)}, \ldots, \theta^{(t-2)}$ .
- This results in a Markov chain with stationary distribution  $\pi(\theta|Y)$ under some conditions on the sampling distribution.
- The theory of Markov Chains (structure, convergence, reversibility, detailed balance, stationarity, etc) is well beyond the scope of this course so we will not dive into it.
- If you are interested, consider taking STA 531/831 or courses on stochastic process.



# PROPERTIES

- Note: Our Markov chain is a collection of draws of θ that are (slightly we hope!) dependent on the previous draw.
- The chain will wander around our parameter space, only remembering where it had been in the last draw.
- We want to have our MCMC sample size, T, big enough so that we can
  - Move out of areas of low probability into regions of high probability (convergence)
  - Move between high probability regions (good mixing)
  - Know our Markov chain is stationary in time (the distribution of samples is the same for all samples, regardless of location in the chain)
- At the start of the sampling, the samples are **not** from the posterior distribution. It is necessary to discard the initial samples as a burn-in to allow convergence. We'll talk more about that in the next class.



# DIFFERENT FLAVORS OF MCMC

- The most commonly used MCMC algorithms are:
  - Metropolis sampling (Metropolis et al., 1953).
  - Metropolis-Hastings (MH) (Hastings, 1970).
  - Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith, 1990).
- Overview of Gibbs Casella & George (1992, The American Statistician, 46, 167-174). the first two
- Overview of MH Chib & Greenberg (1995, The American Statistician).
- We will get to Metropolis and Metropolis-Hastings later in the course.



## EXAMPLE: BIVARIATE NORMAL

Consider

$$egin{pmatrix} heta_1 \ heta_2 \end{pmatrix} \sim \mathcal{N}\left[egin{pmatrix} 0 \ 0 \end{pmatrix}, egin{pmatrix} 1 & 
ho \ 
ho & 1 \end{pmatrix}
ight]$$

where  $\rho$  is known (and is the correlation between  $\theta_1$  and  $\theta_2$ ).

- We will review details of the multivariate normal distribution very soon but for now, let's use this example to explore Gibbs sampling.
- For this density, turns out that we have

 $| heta_1| heta_2\sim\mathcal{N}\left(
ho heta_2,1ho^2
ight)$ 

and

$$| heta_2| heta_1\sim\mathcal{N}\left(
ho heta_1,1-
ho^2
ight)$$

 While we can easily sample directly from this distribution (using the mytnorm or MASS packages in R), let's instead use the Gibbs sampler to draw samples from it.



First, a few examples of the bivariate normal distribution.

 $\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \sim \mathcal{N} \left[ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right]$ 





$$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \sim \mathcal{N} \left[ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right]$$





$$egin{pmatrix} heta_1\ heta_2 \end{pmatrix} \sim \mathcal{N}\left[egin{pmatrix} 0\ 2 \end{pmatrix}, egin{pmatrix} 1 & 0.5\ 0.5 & 2 \end{pmatrix}
ight]$$





$$egin{pmatrix} heta_1 \ heta_2 \end{pmatrix} \sim \mathcal{N}\left[egin{pmatrix} 0 \ 2 \end{pmatrix}, egin{pmatrix} 1 & 0.5 \ 0.5 & 2 \end{pmatrix}
ight]$$





$$egin{pmatrix} heta_1 \ heta_2 \end{pmatrix} \sim \mathcal{N} \left[ egin{pmatrix} 1 \ -1 \end{pmatrix}, egin{pmatrix} 1 & 0.9 \ 0.9 & 0.5 \end{pmatrix} 
ight]$$





$$egin{pmatrix} heta_1 \ heta_2 \end{pmatrix} \sim \mathcal{N}\left[ egin{pmatrix} 1 \ -1 \end{pmatrix}, egin{pmatrix} 1 & 0.9 \ 0.9 & 0.5 \end{pmatrix} 
ight]$$





 $\theta_1$ 

## BACK TO THE EXAMPLE

Again, we have

#### $| heta_1| heta_2\sim\mathcal{N}\left( ho heta_2,1ho^2 ight); \quad heta_2| heta_1\sim\mathcal{N}\left( ho heta_1,1ho^2 ight)$

Here's a code to do Gibbs sampling using those full conditionals:

```
rho <- #set correlation
S <- #set number of MCMC samples
thetamat <- matrix(0,nrow=S,ncol=2)
theta <- c(10,10) #initialize values of theta
for (s in 1:S) {
theta[1] <- rnorm(1,rho*theta[2],sqrt(1-rho^2)) #sample theta1
theta[2] <- rnorm(1,rho*theta[1],sqrt(1-rho^2)) #sample theta2
thetamat[s,] <- theta
}</pre>
```

Here's a code to do sample directly instead:

```
library(mvtnorm)
rho <- #set correlation; no need to set again once you've used previous code
S <- #set number of MCMC samples; no need to set again once you've used previous code
Mu <- c(0,0)
Sigma <- matrix(c(1,rho,rho,1),ncol=2)
thetamat_direct <- rmvnorm(S, mean = Mu,sigma = Sigma)</pre>
```



# PARTICIPATION EXERCISE

- You will work in groups of three. Work with the three students closest to you.
- For  $S \in \{50, 250, 500\}$  and  $ho \in \{0.1, 0.5, 0.95\}$ , do the following:
  - 1. Generate S samples using the two methods.
  - 2. Make a scatter plot of the samples from each method (plot the samples from the Gibbs sampler first) and compare them.
- How do the results differ between the two methods for the different combinations of S and  $\rho$ ?
- Discuss within your teams, document your team findings and submit.
- You can have one person document the findings but make sure to write the name of all three members at the top of the sheet.



# MORE CODE

See how the chain actually evolves with an overlay on the true density:

```
rho <- #set correlation</pre>
Sigma <- matrix(c(1, rho, rho, 1), ncol=2); Mu <- c(0, 0)
x.points <- seq(-3,3,length.out=100)</pre>
v.points <- x.points</pre>
z <- matrix(0,nrow=100,ncol=100)</pre>
for (i in 1:100) {
  for (j in 1:100) {
    z[i,j] <- dmvnorm(c(x.points[i],y.points[j]),mean=Mu,sigma=Sigma)</pre>
  }
contour(x.points,y.points,z,xlim=c(-3,10),ylim=c(-3,10),"orange2",
        xlab=expression(theta[1]),vlab=expression(theta[2]))
S <- #set number of MCMC samples;</pre>
thetamat <- matrix(0,nrow=S,ncol=2)</pre>
theta <- c(10, 10)
points(x=theta[1],y=theta[2],col="black",pch=2)
for (s in 1:S) {
  theta[1] <- rnorm(1, rho*theta[2], sqrt(1-rho^2))</pre>
  theta[2] <- rnorm(1, rho*theta[1], sqrt(1-rho^2))</pre>
  thetamat[s,] <- theta</pre>
  if(s < 20){
    points(x=theta[1],y=theta[2],col="red4",pch=16); Sys.sleep(1)
  } else {
    points(x=theta[1],y=theta[2],col="green4",pch=16); Sys.sleep(0.1)
  }
}
```

