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ANNOUNCEMENTS

Take "Participation Quiz II - Jan 31" on Sakai.

Homework 3 now online.

OUTLINE

Inference for mean, conditional on variance (cont'd)

Noninformative and improper priors

Joint inference for mean and variance

Back to the examples
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THE UNIVARIATE NORMAL MODEL

(CONT'D)
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CONDITIONAL INFERENCE FOR THE MEAN

(RECAP)
Normal data: , where each

 Normal Prior (when /  is known):

 Normal posterior (in terms of precision):

where

; and

.

Y = (y1, y2, … , yn)

yi ∼ N (μ, σ2);    or   yi ∼ N (μ, τ −1).

+ σ2 τ

μ|σ2 ∼ N (μ0, σ2
0);    or   μ|τ ∼ N (μ0, τ −1

0 ).

⇒

μ|Y , τ ∼ N (μn, τ −1
n ).

μn =
τnȳ + τ0μ0

τn + τ0

τn = τn + τ0
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POSTERIOR WITH PRECISION TERMS:
COMBINING INFORMATION

Posterior mean is weighted sum of prior information plus data
information:

Relatively easy to set  if we have a "prior" guess of the mean. What

about ?

If we think of the prior mean as being based on  prior observations

from a similar population as , then we might set , which implies

.

Then the posterior mean is given by

μn =

= μ0 + ȳ

nτȳ + τ0μ0

τn + τ0

τ0

τ0 + τn

nτ

τ0 + τn

μ0

τ0

κ0

Y σ2

0
=

σ2

κ0

τ0 = κ0τ

μn = μ0 + ȳ .
κ0

κ0 + n

n

κ0 + n
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POSTERIOR WITH VARIANCE TERMS

In terms of variances, we have

where

Easy to see that we can re-express the posterior information as a sum of
the prior information and the information from the data.

μ|Y , σ2 ∼ N (μn, σ2
n)

μn =    and   σ2
n = .

ȳ + μ0
n

σ2

1

σ2
0

+
n

σ2

1

σ2
0

1

+
n

σ2

1

σ2
0
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POSTERIOR WITH VARIANCE TERMS

If we once again set , the posterior mean is still given by

By the way, setting   prior dependence between  and ,

whereas an arbitrary , independent on ,  prior independence

between  and .

σ2

0
=

σ
2

κ0

μn = μ0 + ȳ .
κ0

κ0 + n

n

κ0 + n

σ2

0
=

σ2

κ0

⇒ μ σ2

σ2

0
σ2 ⇒

μ σ2
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NONINFORMATIVE AND IMPROPER PRIORS

Generally, we must specify both  and  to do inference.

When prior distributions have no population basis, that is, there is no
justification of the prior as "prior data", prior distributions can be difficult
to construct.

To that end, there is often the desire to construct noninformative priors,
with the rationale being "to let the data speak for themselves".

For example, we could instead assume a uniform prior on  that is

constant over the real line, i.e.,   all values on the real line

are equally likely apriori.

Clearly, this is not a valid pdf since it will not integrate to 1 over the real
line. Such priors are known as improper priors.

An improper prior can still be very useful, we just need to ensure it results
in a proper posterior.

μ0 τ0

μ

π(μ) ∝ 1 ⇒
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JEFFREYS' PRIOR

Question: is there a prior pdf (for a given model) that would be
universally accepted as a noninformative prior?

Laplace proposed the uniform distribution. This proposal lacks invariance
under monotone transformations of the parameter.

For example, a uniform prior on the binomial proportion parameter  is

not the same as a uniform prior on the odds parameter .

A more acceptable approach was introduced by Jeffreys. For single
parameter models, the Jeffreys' prior defines a noninformative prior
density of a parameter  as

where  is the Fisher information for .

θ

ϕ =
θ

1 − θ

θ

π(θ) ∝ √I(θ)

I(θ) θ
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JEFFREYS' PRIOR

The Fisher information gives a way to measure the amount of information
a random variable  carries about an unknown parameter  of a
distribution that describes .

Formally,  is defined as

Alternatively,

Turns out that the Jeffreys' prior for  under the normal model, when 

is known, is

the uniform prior over the real line. You should try to derive this.

Y θ

Y

I(θ)

I(θ) = E[( logf(y; θ))
2
∣∣∣θ] = ∫

Y

( logf(y; θ))
2

f(y; θ)dy.
∂

∂θ

∂

∂θ

I(θ) = −E [ logf(y; θ)∣∣∣θ] = − ∫
Y

( logf(y; θ)) f(y; θ)dy.
∂2

∂2θ

∂2

∂2θ

μ σ2

π(μ) ∝ 1,
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE USING JEFFREYS' PRIOR

Recall that for  known, the normal likelihood simplifies to

ignoring everything else that does not depend on .

With the Jeffreys' prior , can we derive the posterior

distribution?

σ2

∝  exp{− τn(μ − ȳ)2} ,
1

2

μ

π(μ) ∝ 1
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE USING JEFFREYS' PRIOR

Posterior:

This is the kernel of a normal distribution with

mean , and

precision  or variance .

Written differently, we have 

This should look familiar to you. Does it?

π(μ|Y , σ2)  ∝  exp{− τn(μ − ȳ)2}π(μ)

∝  exp{− τn(μ − ȳ)2} .

1

2

1

2

ȳ

nτ =
1

nτ

σ2

n

μ|Y , σ2 ∼ N (ȳ , )
σ2

n
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JOINT INFERENCE FOR MEAN AND

VARIANCE

What happens when /  is unknown? We need a joint prior  for

 and .

Write the joint prior distribution for the mean and variance as the product
of a conditional and a marginal distribution, so we can take advantage
of our work so far.

That is,

For , we need a distribution with support on . One such

family is the gamma family, but this is NOT conjugate for the variance of
a normal distribution.

The gamma distribution is, however, conjugate for the precision , and in
that case, we say that  has an inverse-gamma distribution.

σ τ π(μ, σ2)

μ σ2

π(μ, σ
2)  =  π(μ|σ2)π(σ

2).

π(σ2) (0, ∞)

τ

σ2
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CONDITIONAL SPECIFICATION OF PRIOR

Once again, suppose , where each

A conjugate joint prior is given by

This is often called a normal-gamma prior distribution.

 is the prior guess for , while  is often referred to as the "prior

degrees of freedom", our degree of confidence in .

We do not have conjugacy if we replace  in the normal prior with an

arbitrary prior variance independent of . To do inference in that
scenario, we need Gibbs sampling (to come next week!).

Y = (y1, y2, … , yn)

yi ∼ N (μ, σ2);    or   yi ∼ N (μ, τ −1).

τ =   ∼ Gamma( , )

μ|σ2 ∼ N (μ0, )    or   μ|τ∼ N (μ0, ) .

1

σ2

ν0

2

ν0σ2
0

2

σ2

κ0

1

κ0τ

σ2
0 σ2 ν0

σ2
0

σ2

κ0

σ2
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POSTERIOR FOR THE MEAN GIVEN

VARIANCE, UNDER NORMAL-GAMMA PRIOR

Based on the normal-gamma prior, we need  and .

For , we can leverage our previous results. We have

where

 is simply the sample mean of the current and prior observations, and

posterior variance of  given  is  divided by the total number of

observations (prior and current).

π(μ|Y , σ2) π(τ|Y )

π(μ|Y , σ2)

μ|Y , σ2 ∼ N (μn, )   or   μ|Y , τ ∼ N (μn, )
σ2

κn

1

κnτ

μn = = = μ0 + ȳ    and   κn = κ0 + n.

ȳ + μ0
n

σ2

κ0

σ2

+
n

σ2

κ0

σ2

κ0μ0 + nȳ

κn

κ0

κn

n

κn

μn

μ σ2 σ2
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POSTERIOR DERIVATION

Some algebra is required to get the marginal posterior of . Let's write
the full joint posterior and go from there. We must keep some of the
terms we discarded in the last lecture.

Recall the likelihood

Now,  

and  

τ

L(Y ; μ, τ) ∝ τ  exp{− τs2(n − 1)}  exp{− τn(μ − ȳ)2} ,

n

2 1

2

1

2

μ|τ ∼ N (μ0, )
1

κ0τ
⇒

π(μ|τ) ∝  exp{− κ0τ(μ − μ0)2} .
1

2

τ ∼ Ga( , )
ν0

2

ν0σ2
0

2
⇒

π(τ) ∝ τ
−1

exp{− } .

ν0

2
τν0σ2

0

2
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POSTERIOR DERIVATION

⇒ π(μ, τ|Y )  ∝  π(μ|σ2) × π(τ) × L(Y ; μ, σ2)

∝ exp{− κ0τ(μ − μ0)2}


∝ π(μ|σ2)

× τ
−1

exp {− }


∝ π(τ)

             × τ  exp{− τs2(n − 1)}  exp{− τn(μ − ȳ)2}


∝ L(Y ;μ,σ2)

= exp{− κ0τ(μ − μ0)2}  exp{− τn(μ − ȳ)2}


Terms involving μ

             × τ
−1

exp {− } τ  exp{− τs2(n − 1)}


Terms NOT involving μ

= exp{− κ0τ(μ2 − 2μμ0 + μ2
0)}  exp{− τn(μ2 − 2μȳ + ȳ2)}

             × τ
−1

exp {− }

1

2

ν0

2
τν0σ2

0

2

n

2 1

2

1

2

1

2

1

2

ν0

2
τν0σ2

0

2

n

2 1

2

1

2

1

2
ν0 + n

2
τ [ν0σ2

0 + s2(n − 1)]

2
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POSTERIOR DERIVATION

Set  and , then complete the square

for the first part like we did in the last lecture.

π(μ, τ|Y )  ∝   exp{− [κ0τ(μ2 − 2μμ0) + τn(μ2 − 2μȳ)]}  exp{− [κ0τμ2
0 + τnȳ2]}

              × τ
−1

exp{− }

=   exp{− [μ2(nτ + κ0τ) − 2μ(nτȳ + κ0τμ0)]}  exp{− [κ0τμ2
0 + τnȳ2]}

              × τ
−1

exp{− }

1

2

1

2
ν0 + n

2
τ [ν0σ2

0 + s2(n − 1)]

2

1

2

1

2
ν0 + n

2
τ [ν0σ2

0 + s2(n − 1)]

2

a⋆ = (nτ + κ0τ) b⋆ = (nτȳ + κ0τμ0)

⇒  π(μ, τ|Y )  ∝   exp{− [μ2a⋆ − 2μb⋆]}  exp{− [κ0τμ2
0 + τnȳ2]}

              × τ
−1

exp{− }

1

2

1

2
ν0 + n

2
τ [ν0σ2

0 + s2(n − 1)]

2
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POSTERIOR DERIVATION

⇒  π(μ, τ|Y )  ∝   exp {− a⋆[μ − ]
2

+ }  exp{− [κ0τμ2
0 + τnȳ2]}

              × τ
−1

exp {− }

=   exp {− a⋆[μ − ]
2

}  exp {− [κ0τμ2
0 + τnȳ2 − ]}

              × τ
−1

exp {− }

=   exp {− a⋆[μ − ]
2

}  exp{− [κ0τμ2
0 + τnȳ2 − ]}


Expand terms and recombine

             × τ
−1

exp {− }

=   exp {− a⋆[μ − ]
2

}  exp {− [ ]}

              × τ
−1

exp {− }

1

2

b⋆

a⋆

(b⋆)2

2a⋆

1

2

ν0 + n

2
τ [ν0σ2

0 + s2(n − 1)]

2

1

2

b⋆

a⋆

1

2

(b⋆)2

a⋆

ν0 + n

2
τ [ν0σ2

0 + s2(n − 1)]

2

1

2

b⋆

a⋆

1

2

(nτȳ + κ0τμ0)2

(nτ + κ0τ)

ν0 + n

2
τ [ν0σ2

0 + s2(n − 1)]

2

1

2

b⋆

a⋆

1

2

nκ0τ 2(μ2
0 − 2μ0ȳ + ȳ2)

τ(n + κ0)

ν0 + n

2
τ [ν0σ2

0 + s2(n − 1)]

2
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POSTERIOR DERIVATION

⇒  π(μ, τ|Y )  ∝   exp {− a⋆[μ − ]
2

}  exp {− [ ]}

             × τ
−1

exp {− }

=   exp {− a⋆[μ − ]
2

}


Substitute the values for a⋆ and b⋆ back

             × τ
−1

exp {− } exp {− [ ]}

=   exp {− (nτ + κ0τ)[μ2 − ]
2

}


Normal Kernel

              × τ
−1

exp{− [ν0σ2
0 + s2(n − 1) + (ȳ − μ0)2]}


Gamma Kernel

1

2

b⋆

a⋆

τ

2

nκ0(ȳ − μ0)2

(n + κ0)

ν0 + n

2
τ [ν0σ2

0 + s2(n − 1)]

2

1

2

b⋆

a⋆

ν0 + n

2
τ [ν0σ2

0 + s2(n − 1)]

2

τ

2

nκ0(ȳ − μ0)2

(n + κ0)

1

2

(nτȳ + κ0τμ0)

(nτ + κ0τ)

ν0 + n

2
τ

2

nκ0

(n + κ0)
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POSTERIOR DERIVATION

where

Turns out that the marginal posterior of , that is, 

 is a t-distribution. You can derive that

distribution if you are interested, we won't spend time on it in class.

⇒  π(μ, τ|Y )  ∝   exp {− τ(n + κ0)[μ2 − ]
2

}


Normal Kernel

              × τ
−1

exp{− [ν0σ
2
0 + s2(n − 1) + (ȳ − μ0)2]}


Gamma Kernel

=   N (μn, ) × Gamma( , ) = π(μ|Y , τ)π(τ|Y ),

1

2

(nȳ + κ0μ0)

(n + κ0)

ν0 + n

2
τ

2

nκ0

(n + κ0)

1

κnτ

νn

2

νnσ
2
n

2

κn = κ0 + n

μn = = μ0 + ȳ

νn = ν0 + n

σ2
n = [ν0σ

2
0 + s2(n − 1) + (ȳ − μ0)2] = [ν0σ

2
0 +

n

∑
i=1

(yi − ȳ)2 + (ȳ − μ0)2]

κ0μ0 + nȳ

κn

κ0

κn

n

κn

1

νn

nκ0

κn

1

νn

nκ0

κn

μ

π(μ|Y ) = ∫
∞

0
π(μ, τ|Y )dτ
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BACK TO OUR EXAMPLES

Pygmalion: questions of interest

Is the average improvement for the accelerated group larger than
that for the no growth group?

What is ?

Is the variance of improvement scores for the accelerated group
larger than that for the no growth group?

What is ?

Job training: questions of interest

Is the average change in annual earnings for the training group
larger than that for the no training group?

What is ?

Is the variance of change in annual earnings for the training group
larger than that for the no training group?

What is ?

Pr[μA > μN |YA, YN )

Pr[σ2
A

> σ2
N |YA, YN )

Pr[μT > μN |YT , YN )

Pr[σ2
T > σ2

N |YT , YN )
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MILDLY INFORMATIVE PRIORS

We will focus on the Pygmalion study. Follow the same approach for the
job training data.

Suppose you have no idea whether students would improve IQ on
average. Set .

Suppose you don't have any faith in this belief, and think it is the
equivalent of having only 1 prior observation in each group. Set 

.

Based on the literature, SD of change scores should be around 10 in
each group, but still you don't have a lot of faith in this belief. Set

 and .

Graph priors to see if they accord with your beliefs. Sampling new values
of  from the priors offers a good check.

μ0A = μ0N = 0

κ0A = κ0N = 1

ν0A = ν0N = 1 σ2

0A
= σ2

0N = 100

Y
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RECALL THE PYGMALION DATA

Data:

Accelerated group (A): 20, 10, 19, 15, 9, 18.

No growth group (N): 3, 2, 6, 10, 11, 5.

Summary statistics:

; .

; .

ȳA = 15.2 sA = 4.71

ȳN = 6.2 sN = 3.65
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ANALYSIS WITH MILDLY INFORMATIVE

PRIORS

κnA = κ0A + nA = 1 + 6 = 7

κnN = κ0N + nN = 1 + 6 = 7

νnA = ν0A + nA = 1 + 6 = 7

νnN = ν0N + nN = 1 + 6 = 7

μnA = = ≈ 13.03

μnN = = ≈ 5.31

σ2
nA

= [ν0Aσ2
0A

+ s2
A

(nA − 1) + (ȳA − μ0A)2]

= [(1)(100) + (22.17)(5) + (15.2 − 0)2] ≈ 58.41

σ2
nN

= [ν0N σ2
0N

+ s2
N

(nN − 1) + (ȳN − μ0N )2]

= [(1)(100) + (13.37)(5) + (6.2 − 0)2] ≈ 28.54

κ0Aμ0A + nAȳA

κnA

(1)(0) + (6)(15.2)

7

κ0N μ0N + nN ȳN

κnN

(1)(0) + (6)(6.2)

7
1

νnA

nAκ0A

κnA

1

7

(6)(1)

(7)

1

νnN

nN κ0N

κnN

1

7

(6)(1)

(7)
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ANALYSIS WITH MILDLY INFORMATIVE

PRIORS

So our joint posterior is

μA|YA, τA ∼  N (μnA, ) = N (13.03, )

τA|YA ∼ Gamma( , ) = Gamma( , )

μN |YN , τN ∼  N (μnN , ) = N (5.31, )

τN |YN ∼ Gamma( , ) = Gamma( , )

1

κnAτA

1

7τA

νnA

2

νnAσ2
nA

2

7

2

7(58.41)

2

1

κnN τN

1

7τN

νnN

2

νnN σ2
nN

2

7

2

7(28.54)

2
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MONTE CARLO SAMPLING

To evaluate whether the accelerated group has larger IQ gains than the
normal group, we would like to estimate quantities like 

 which are based on the marginal posterior of 

rather than the conditional distribution.

Fortunately, this is easy to do by generating samples of  and  from

their joint posterior.

Pr[μA > μN |YA, YN ) μ

μ σ2
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MONTE CARLO SAMPLING

Suppose we simulate values using the following Monte Carlo procedure:

τ
(1) ∼ Gamma( , )

μ
(1) ∼  N (μn, )

τ
(2) ∼ Gamma( , )

μ
(2) ∼  N (μn, )

  ⋮

  ⋮

  ⋮

τ
(m) ∼ Gamma( , )

μ
(m) ∼  N (μn, )

νn

2
νnσ2

n

2
1

κnτ (1)

νn

2
νnσ2

n

2
1

κnτ (2)

νn

2
νnσ2

n

2
1

κnτ (m)
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MONTE CARLO SAMPLING

Note that we are sampling each , , from its conditional

distribution, not from the marginal.

The sequence of pairs  simulated using this

method are independent samples from the joint posterior .

Additionally, the simulated sequence  are independent

samples from the marginal posterior distribution.

While this may seem odd, keep in mind that while we drew the 's as

conditional samples, each was conditional on a different value of .

Thus, together they constitute marginal samples of .

μ(j) j = 1, … , m

{(τ, μ)(1), … , (τ, μ)(m)}

π(μ, τ|Y )

{μ(1), … , μ(m)}

μ

τ

μ
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MONTE CARLO SAMPLING

It is easy to sample from these posteriors:

aA <- 7/2
aN <- 7/2
bA <- (7/2)*58.41
bN <- (7/2)*28.54
muA <- 13.03
muN <- 5.31
kappaA <- 7
kappaN <- 7
tauA_postsample <- rgamma(10000,aA,bA)
thetaA_postsample <- rnorm(10000,muA,sqrt(1/(kappaA*tauA_postsample)))
tauN_postsample <- rgamma(10000,aN,bN)
thetaN_postsample <- rnorm(10000,muN,sqrt(1/(kappaN*tauN_postsample)))
sigma2A_postsample <- 1/tauA_postsample
sigma2N_postsample <- 1/tauN_postsample
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MONTE CARLO SAMPLING

Is the average improvement for the accelerated group larger than that
for the no growth group?

What is ?

mean(thetaA_postsample > thetaN_postsample)

## [1] 0.9721

Is the variance of improvement scores for the accelerated group larger
than that for the no growth group?

What is ?

mean(sigma2A_postsample > sigma2N_postsample)

## [1] 0.8185

What can we conclude from this?

Pr[μA > μN |YA, YN )

Pr[σ2
A

> σ2
N

|YA, YN )
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IMPROPER PRIOR

Let's be very objective with the prior selection. In fact, let's be extreme!

If we let the normal variance  then our prior on  is  (recall

the Jeffreys' prior on  for known ).

If we let the gamma variance get very large (e.g., ), then the

prior on  is .

 is improper (does not integrate to 1) but does lead to a

proper posterior distribution that yields inferences similar to frequentist
ones.

For that choice, we have

→ ∞ μ ∝ 1

μ σ2

a, b → 0

σ2 ∝
1

σ2

π(μ, σ2) ∝
1

σ2

μ|Y , τ ∼ N (ȳ , )

τ|Y ∼ Gamma( , )

1

nτ

n − 1

2

(n − 1)s2

2
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ANALYSIS WITH NONINFORMATIVE PRIORS

So our joint posterior is

μA|YA, τA ∼  N (ȳA, ) = N (15.2, )

τA|YA ∼ Gamma( , ) = Gamma( , )

μN |YN , τN ∼  N (ȳN , ) = N (6.2, )

τN |YN ∼ Gamma( , ) = Gamma( , )

1

nAτA

1

6τA

nA − 1

2

(nA − 1)s2
A

2

6 − 1

2

(6 − 1)(22.17)

2

1

nN τN

1

6τN

nN − 1

2

(nN − 1)s2
A

2

6 − 1

2

(6 − 1)(13.37)

2
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MONTE CARLO SAMPLING

It is easy to sample from these posteriors:

aA <- (6-1)/2
aN <- (6-1)/2
bA <- (6-1)*22.17/2
bN <- (6-1)*13.37/2
muA <- 15.2
muN <- 6.2
tauA_postsample_impr <- rgamma(10000,aA,bA)
thetaA_postsample_impr <- rnorm(10000,muA,sqrt(1/(6*tauA_postsample_impr)))
tauN_postsample_impr <- rgamma(10000,aN,bN)
thetaN_postsample_impr <- rnorm(10000,muN,sqrt(1/(6*tauN_postsample_impr)))
sigma2A_postsample_impr <- 1/tauA_postsample_impr
sigma2N_postsample_impr <- 1/tauN_postsample_impr
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MONTE CARLO SAMPLING

Is the average improvement for the accelerated group larger than that
for the no growth group?

What is ?

mean(thetaA_postsample_impr > thetaN_postsample_impr)

## [1] 0.9941

Is the variance of improvement scores for the accelerated group larger
than that for the no growth group?

What is ?

mean(sigma2A_postsample_impr > sigma2N_postsample_impr)

## [1] 0.7113

How does the new choice of prior affect our conclusions?

Pr[μA > μN |YA, YN )

Pr[σ2
A

> σ2
N

|YA, YN )
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RECALL THE JOB TRAINING DATA

Data:

No training group (N): sample size .

Training group (T): sample size .

Summary statistics for change in annual earnings:

; 

; 

Using the same approach we used for the Pygmalion data, answer the
questions of interest.

nN = 429

nA = 185

ȳN = 1364.93 sN = 7460.05

ȳT = 4253.57 sT = 8926.99
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