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SAMPLING METHODS
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REJECTION SAMPLING

Setup:

 is some density we are interested in sampling from;

 is tough to sample from but we are able to evaluate  as a

function at any point; and

 is some proposal distribution or importance sampling distribution

that is easier to sample from.

Two key requirements:

 is easy to sample from; and

 is easy to evaluate at any point as is the case for .

Usually, the context is one in which  has been derived as an analytic

approximation to ; and the closer the approximation, the more

accurate the resulting Monte Carlo analysis will be.

p(θ)

p(θ) p(θ)

g(θ)

g(θ)

g(θ) p(θ)

g(θ)

p(θ)
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REJECTION SAMPLING

Procedure:

1. Define .

2. Assume that  for some constant M. If 

represents a good approximation to , then M should not be too

far from 1.

3. Generate a candidate value  and accept with probability 

: if accepted,  is a draw from ; otherwise reject and try

again.
Equivalently, generate  independently of . Then accept 
 as a draw from  if, and only if, .

For those interested, the proof that all accepted  values are indeed from
 is on the next slide. We will not spend time on it.

Clearly, we need  for this to work. However, in the case of truncated
densities, we actually have .

w(θ) = p(θ)/g(θ)

w(θ) = p(θ)/g(θ) < M g(θ)

p(θ)

θ ∼ g(θ)

w(θ)/M θ p(θ)

u ∼ U(0, 1) θ

θ p(θ) u < w(θ)/M

θ

p(θ)

M

M
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PROOF FOR SIMPLE ACCEPT/REJECT

We need to show that all accepted  values are indeed from .

Equivalently, show that .

By Bayes' theorem,

But,

 since , and

Therefore,

θ p(θ)

f(θ|u < w(θ)/M) = p(θ)

f(θ|u < w(θ)/M) = = .
Pr(θ and u < w(θ)/M)

Pr(u < w(θ)/M)

Pr(u < w(θ)/M  | θ)g(θ)

Pr(u < w(θ)/M)

Pr(u < w(θ)/M  | θ) = w(θ)/M u ∼ U(0, 1)

Pr(u < w(θ)/M) = ∫ Pr(u < w(θ)/M  | θ)g(θ)dθ

= ∫ w(θ)/Mg(θ)dθ = 1/M ∫ w(θ)g(θ)dθ = 1/M ∫ p(θ)dθ = 1/M.

f(θ|u < w(θ)/M) = = = w(θ)g(θ) = p(θ).
Pr(u < w(θ)/M  | θ)g(θ)

Pr(u < w(θ)/M)

w(θ)/Mg(θ)

1/M
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REJECTION SAMPLING FOR TRUNCATED

DENSITIES

The inverse CDF method works well for truncated densities but what
happens when we can not write down the truncated CDF?

Suppose we want to sample from , that is, a known pdf 

truncated to .

Recall that . Using the notation for rejection

sampling,  and .

Set , so that  is the normalizing constant of the

truncated density.

Then,  as required.

f[a,b](θ) f(θ)

[a, b]

f[a,b](θ) ∝ f(θ)1[θ ∈ [a, b]]

p(θ) = f[a,b](θ) g(θ) = f(θ)

1/M = ∫
b

a
f(θ⋆)dθ⋆ M

w(θ) = p(θ)/g(θ) = M1[θ ∈ [a, b]] ≤ M
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REJECTION SAMPLING FOR TRUNCATED

DENSITIES

We can then use the procedure on page 5 to generate the required
samples.

Specifically,

For each , generate . If , accept ,

otherwise reject and try again.

Easy to show that this is equivalent to accepting each  with
probability .

i = 1, … , m θi ∼ f θi ∈ [a, b] θi

θi

w(θ)/M
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EXAMPLE

#Simple code for using rejection sampling to generate m samples
#from the Beta[10,10] density truncated to (0.35,0.6).
set.seed(12345)
#NOTE: there are more efficient ways to write this code!

#set sample size and reate vector to store sample
m <- 10000; THETA <- rep(0,m)
#keep track of rejects
TotalRejects <- 0; Rejections <- NULL
#now the 'for loop'
for(i in 1:m){
  t <- 0
  while(t < 1){
    theta <- rbeta(1,10,10)
    if(theta > 0.35 & theta < 0.6){
      THETA[i] <- theta
      t <- 1
    } else {
    TotalRejects <- TotalRejects + 1
    Rejections <- rbind(Rejections,theta)
  }
}
}
#How many rejections in all, to generate m=10000 samples?
TotalRejects

## [1] 3740

Acceptance rate .≈ 0.726
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EXAMPLE

How does our sample compare to the true truncated density? m = 100
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EXAMPLE

How does our sample compare to the true truncated density? m = 1000
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EXAMPLE

How does our sample compare to the true truncated density? m = 10000
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EXAMPLE

How does our sample compare to the true truncated density? m = 100000
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COMMENTS

Clearly less efficient than the inverse CDF method, which we already
know how to use for this particular problem.

When you can write down the truncated CDF, use the inverse CDF
method instead.

When you cannot, rejection sampling can be a possible alternative, as
are many more sampling methods which we will not cover in this course.

Anyway, generally, rejection sampling can still be very useful.

Importance sampling is another related sampling method but we will not
spend time on it. If you are interested, take a look at the next few slides.
If not, feel free to skip to the normal model.
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IMPORTANCE SAMPLING

Importance sampling is actually one of the first steps into Monte Carlo
analysis, in which simulated values from one distribution are used to
explore another.

Simulation from the "wrong distribution" can be incredibly useful as we
have seen with rejection sampling and will also see later in this course.

Not used as often anymore but still of practical interest in

fairly small problems, in terms of dimension,

in which the density of the distribution of interest can be easily
evaluated, but when it is difficult to sample from directly, and

when it is relatively easy to identify and simulate from distributions
that approximate the distribution of interest.

Importance sampling and Rejection sampling use the same importance
ratio ideas, but the latter leads to exact corrections and so exact samples
from .p(θ)

15 / 44



IMPORTANCE SAMPLING

Interest lies in expectations of the form (instead of the actual samples)

Write

that is,  under  is just  under .

Using direct Monte Carlo integration

where . We are sampling from the "wrong" distribution.

H = ∫ h(θ)p(θ)dθ,

H = ∫ h(θ)w(θ)g(θ)dθ   with   w(θ) = p(θ)/g(θ)

E[h(θ)] p(θ) E[h(θ)w(θ)] g(θ)

h̄ =
m

∑
i=1

w(θi)h(θi).
1

m

θ1, … , θm
ind
∼ g(θ)
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IMPORTANCE SAMPLING

The measure of "how wrong" we are at each simulated  value is the
importance weight

These ratios weight the sample estimates  to "correct" for the fact

that we sampled the wrong distribution.

See Lopes & Gamerman (Ch 3.4) and Robert and Casella (Ch. 3.3) for
discussion of convergence and optimality.

Clearly, the closer  is to , the better the results, just as we had with

rejection sampling.

θm

w(θi) = p(θi)/g(θi).

h(θi)

g p
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https://www.amazon.com/Monte-Statistical-Methods-Springer-Statistics/dp/1441919392


IMPORTANCE SAMPLING

Key considerations:

MC estimate  has the expectation ; and is generally almost surely
convergent to  (under certain conditions of course but we will not
dive into those).

 is often going to be finite in cases in which, generally, 

 is bounded and decays rapidly in the tails of .

Thus, superior MC approximations, are achieved for choices of 

whose tails dominate those of the target .

That is, importance sampling distributions should be chosen to have
tails at least as fat as the target (think normal distribution vs t-
distribution).

Obviously require the support of  to be the same as, or contain,

that of .

These also clearly apply to rejection sampling too.

h̄ H

H

V[h̄]

w(θ) = p(θ)/g(θ) p(θ)

g(θ)

p(θ)

g(θ)

p(θ)
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IMPORTANCE SAMPLING

Problems in which  can be computed are actually rare.

As you will see when we move away from conjugate distributions, we
usually only know  up to a normalizing constant.

When this is the case, simply "re-normalize" the importance weights, so
that

Generally, in importance sampling, weights that are close to uniform are
desirable, and very unevenly distributed weights are not.

w(θ) = p(θ)/g(θ)

p(θ)

h̄ =
m

∑
i=1

wih(θi)   where   wi = .
1

m

w(θi)

∑
m

i=1 w(θi)
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INTRODUCTION TO THE UNIVARIATE

NORMAL MODEL
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MOTIVATING EXAMPLE: JOB TRAINING

In the 1970s, researchers in the U.S. ran several randomized
experiments intended to evaluate public policy programs.

One of the most famous experiments is the National Supported Work
(NSW) Demonstration, in which researchers wanted to assess whether or
not job training for disadvantaged workers had an effect on their wages.

Eligible workers were randomly assigned either to receive job training or
not to receive job training.

Candidates eligible for the NSW were randomized into the program
between March 1975 and July 1977.

For more details, read Lalonde, R. J. (1986) and Dehejia, R., and
Wahba, S. (1999).

21 / 44



MOTIVATING EXAMPLE: JOB TRAINING

Setup:

Pre-training wages: real annual earnings in 1974 before training.

Two groups: some participants received job training and the rest did
not.

Post-training wages: real annual earnings in 1978 upon
completion of training.

Question of interest: is there evidence that workers who receive job
training tend to earn higher wages than workers who do not receive job
training?

The original study really is a causal inference setup, but the data used in
this example only uses a subset of the data.

The data is richer than what we will use it for (i.e., there are covariates
we can control for) but we will only focus on the pre and post wages for
the two groups.
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JOB TRAINING: THE DATA

Data:

No training group (N): sample size .

Training group (T): sample size .

Diff wages: Post-training wages -- Pre-training wages.

Summary statistics for change in annual earnings:

; 

; 

Wages/income are well known to be approximately normally
distributed. Let's look at the distribution of "change in annual earnings"
for the two groups.

nN = 429

nA = 185

ȳN = 1364.93 sN = 7460.05

ȳT = 4253.57 sT = 8926.99
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JOB TRAINING: THE DATA

Not completely normal but not too far off either. Lots of overlap between the
two groups.
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MODEL FOR CHANGES IN EARNINGS

Want posterior distribution of . Specifically, we would like to

compute  or equivalently, .

Inference for  can be complicated in frequentist paradigm when 

.

Use approximate -distributions based on the Welch-Satterthwaite
degrees of freedom.

Trivial with Bayesian inference

By the way, also trivial to compute  with Bayesian

inference, which we will do later.

How to do posterior inference for such normal models?

y
(T )
i ∼ N (μT , σ2

T )

y
(N)
i ∼ N (μN , σ2

N
)

μT − μN

Pr[μT > μN |YT , YN ) Pr[μT − μN > 0|YT , YN )

μT − μN

σ2
T ≠ σ2

N

t

Pr[σ2
T > σ2

N |YT , YN )
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ANOTHER EXAMPLE: PYGMALION STUDY

Pygmalion effect is a phenomenon where expectation affects
performance.

Question of interest: do teachers' expectations impact academic
development of children?

Setup:

Researchers gave IQ test to elementary school children.

Randomly picked six children & told teachers that the test predicts
them to have high potential for accelerated growth.

They randomly picked six children and told teachers that the test
predicts them to have NO potential for growth.

At end of school year, they gave IQ test again to all students.

They recorded the change in IQ scores of each student.
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ANOTHER EXAMPLE: PYGMALION STUDY

Data:

Accelerated group (A): 20, 10, 19, 15, 9, 18.

No growth group (N): 3, 2, 6, 10, 11, 5.

Summary statistics:

; .

; .

IQ test scores are also well known to be approximately normally
distributed.

Can't really check this assumption with only  observations.

ȳA = 15.2 sA = 4.71

ȳN = 6.2 sN = 3.65

n = 6
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MODEL FOR CHANGES IN SCORES

Once again, we want posterior distribution of .

As before, we would like to compute 
.

We would also like to compute .

To answer both questions, let's learn the Bayesian normal model.

y
(A)
i ∼ N (μA, σ2

A
)

y
(N)

i ∼ N (μN , σ2
N )

μA − μN

Pr[μA > μN |YA, YN ) ≡ Pr[μA − μN > 0|YA, YN )

Pr[σ2
A > σ2

N |YA, YN )
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NORMAL DISTRIBUTION

A random variable  has a normal distribution, written as ,

if the pdf is

where  is the mean and  is the variance.

It is also common (and would often be more convenient for our purposes)
to write the pdf in terms of precision, , where .

In that case, the pdf is instead

Y Y ∼ N (μ, σ2)

p(y; μ, σ2) =  e
−

;    y ∈ (−∞, ∞),   μ ∈ (−∞, ∞),   σ ∈ (0, ∞).
1

√2πσ2

(y − μ)2

2σ2

μ σ2

τ τ = 1/σ2

p(y; μ, σ2) = τ  e− τ(y−μ)2
;    y ∈ (−∞, ∞),   μ ∈ (−∞, ∞),   τ ∈ (0, ∞).

1

√2π

1
2

1
2
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EXAMPLE NORMAL DISTRIBUTIONS
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COMMENTS ON THE NORMAL DISTRIBUTION

It is amazing how often real data are close to normally distributed.

Likely a consequence of CLT -- sums and means of independent random
variables tend to be approximately normally distributed.

Occurs under very general conditions.

Normality?

Height, weight and other body measurements,

Income\wages\earnings,

Cumulative hydrologic measures such as annual rainfall or monthly
river discharge,

Errors in astronomical or physical observations,

Many more examples!
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PROPERTIES OF THE NORMAL DISTRIBUTION

Mean, median and mode are all the same .

Symmetric about the mean .

95% of the density (95% probability) within  (approximately two
standard deviations) of the mean.

If  and  with , then

for constants  and .

When independence does not hold, the sum of two normally distributed
random variables is still normally distributed.

However, when that is the case, we must account for the correlation in
the variance term.

(μ)

μ

±1.96σ

X ∼ N (θ, s2) Y ∼ N (μ, σ2) X ⊥ Y

aX + bY ∼ N (aθ + bμ, a2s2 + b2σ2),

a b
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NOTES ON NORMAL DISTRIBUTION IN R
rnorm, dnorm, pnorm, qnorm in R take mean and standard deviation  as
arguments.

If you use the variance  instead you will get wrong answers!

For example, rnorm(n,m,s) generates  normal random variables with mean
 and standard deviation , that is, .

σ

σ
2

n

m s N (m, s
2)
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NORMAL MODEL

Suppose we have independent observations , where

each  or , with unknown parameters  and 

 (or ).

Then, the likelihood is

Y = (y1, y2, … , yn)
yi ∼ N (μ, σ2) yi ∼ N (μ, τ −1) μ

σ2 τ

L(Y ; μ, σ2) =
n

∏
i=1

τ  exp{− τ(yi − μ)2}

∝ τ  exp{− τ

n

∑
i=1

(yi − μ)2}

∝ τ  exp{− τ

n

∑
i=1

[(yi − ȳ) − (μ − ȳ)]2}

∝ τ  exp{− τ [
n

∑
i=1

(yi − ȳ)2 −
n

∑
i=1

(μ − ȳ)2]}

∝ τ  exp{− τ [
n

∑
i=1

(yi − ȳ)2 − n(μ − ȳ)2]}

∝ τ  exp{− τs2(n − 1)}  exp{− τn(μ − ȳ)2} .

1

√2π

1
2

1

2

n

2
1

2

n

2
1

2

n

2
1

2

n

2
1

2

n

2
1

2

1

2
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LIKELIHOOD FOR NORMAL MODEL

Likelihood:

where

 is the sample mean; and

 is the sample variance.

Sufficient statistics:

Sample mean ; and

Sample sum of squares .

MLEs:

.

, and .

L(Y ; μ, σ2) ∝ τ  exp{− τs2(n − 1)}  exp{− τn(μ − ȳ)2} ,
n

2
1

2

1

2

ȳ = ∑n
i=1 yi

s2 = ∑n
i=1(yi − ȳ)2/(n − 1)

ȳ

SS = s2(n − 1) = ∑n
i=1(yi − ȳ)2

μ̂ = ȳ

τ̂ = n/SS σ̂2 = SS/n
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE

We can break down inference problem for this two-parameter model into
two one-parameter problems.

First start by developing inference on  when  is known. Turns out we

can use a conjugate prior for . We will get to unknown  in the

next class.

For  known, the normal likelihood further simplifies to

leaving out everything else that does not depend on .

For , we consider , i.e., , where .

Let's derive the posterior .

μ σ2

π(μ|σ2) σ2

σ2

∝  exp{− τn(μ − ȳ)2} ,
1

2

μ

π(μ|σ2) N (μ0, σ2
0) N (μ0, τ −1

0 ) τ −1
0 = σ2

0

π(μ|Y , σ2)
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE

Posterior:

Expanding out squared terms

Ignoring terms not containing 

π(μ|Y , σ2)  ∝  π(μ|σ2)L(Y ; μ, σ2)  ∝  exp{− τ0(μ − μ0)2}  exp{− τn(μ − ȳ)2}
1

2

1

2

⇒ π(μ|Y , σ2)  ∝  exp{− τ0(μ2 − 2μμ0 + μ2
0)}  exp{− τn(μ2 − 2μȳ + ȳ2)}

1

2

1

2

μ

⇒ π(μ|Y , σ2)  ∝  exp{− τ0(μ2 − 2μμ0)}  exp{− τn(μ2 − 2μȳ)}

∝  exp{− [τ0(μ2 − 2μμ0) + τn(μ2 − 2μȳ)]}

∝  exp{− [μ2(τn + τ0) − 2μ(τnȳ + τ0μ0)]} .

1

2

1

2

1

2

1

2
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE

Notice that  is essentially a quadratic

equation of the form , where

,

, and

 does not depend on .

Note that  contains some of the terms we ignored on the previous

slide but we need not know its exact form here.

Goal: Turn this quadratic equation into an expression of the form 
, for some  and , so that we have something that resembles

the kernel of a normal density.

How? Complete the square!

[μ2(τn + τ0) − 2μ(τnȳ + τ0μ0)]
a⋆μ2 − 2b⋆μ + c⋆

a⋆ = τn + τ0

b⋆ = τnȳ + τ0μ0

c⋆ μ

c⋆

m(μ − r)2 m r
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE

Recall how to complete the square. Specifically, we can write

as

where

, and

.

aμ2 + bμ + c

a(μ + d)2 + e,

d =
b

2a

e = c −
b2

4a
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE

Completing the square and rearranging (where  and 
),

which is the kernel of a normal distribution with

mean , and

precision  or variance .

a⋆ = τn + τ0

b⋆ = τnȳ + τ0μ0

⇒ π(μ|Y , σ2)  ∝  exp{− [a⋆μ2 − 2b⋆μ]}

=  exp{− a⋆ [μ2 − μ]}

=  exp{− a⋆ [μ2 − μ + ] + }

∝  exp{− a⋆[μ − ]
2

} ,

1

2

1

2

2b⋆

a⋆

1

2

2b⋆

a⋆

(b⋆)2

(a⋆)2

(b⋆)2

2a⋆

1

2

b⋆

a⋆

b⋆

a⋆

a⋆ (a⋆)−1
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POSTERIOR WITH PRECISION TERMS

In terms of precision, we have

where

and

μ|Y , σ2 ∼ N (μn, τ −1
n )

μn = =
b⋆

a⋆

τnȳ + τ0μ0

τn + τ0

τn = a⋆ = τn + τ0.
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POSTERIOR WITH PRECISION TERMS

As mentioned before, Bayesians often prefer to talk about precision
instead of variance.

We have

 as the sampling precision (how close the 's are to ).

 as the prior precision (our prior belief about the uncertainty about 
 around our prior guess ).

 as the posterior precision

As we have on the previous slide, the posterior precision equals the prior

precision plus the data precision.

That is, we see that the posterior information is a sum of the prior
information and the information from the data.

τ yi μ

τ0

μ μ0

τn
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POSTERIOR WITH PRECISION TERMS:
COMBINING INFORMATION

Posterior mean is weighted sum of prior information plus data
information:

Recall that  (and thus ) is known for now.

If we think of the prior mean as being based on  prior observations

from a similar population as , then we might set ,

which implies , and then the posterior mean is given by

μn =

= μ0 + ȳ

nτȳ + τ0μ0

τn + τ0

τ0

τ0 + τn

nτ

τ0 + τn

σ2 τ

κ0

y1, y2, … , yn σ
2
0

=
σ

2

κ0

τ0 = κ0τ

μn = μ0 + ȳ .
κ0

κ0 + n

n

κ0 + n
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POSTERIOR WITH VARIANCE TERMS

In terms of variances, we have

where

and

It is still easy to see that we can re-express the posterior information as a
sum of the prior information and the information from the data.

μ|Y , σ2 ∼ N (μn, σ2
n)

μn = =
b⋆

a⋆

ȳ + μ0
n

σ2

1

σ2
0

+
n

σ2

1

σ2
0

σ2
n = = .

1

a⋆

1

+
n

σ2

1

σ2
0
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