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Add/drop today

HW1 due tomorrow
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LOSS FUNCTIONS AND BAYES RISK
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BAYES ESTIMATE

As we've seen by now, having posterior distributions instead of one-
number summaries is great for capturing uncertainty.

That said, it is still very appealing to have simple summaries, especially
when dealing with clients or collaborators from other fields, who desire
one.

Can we obtain a single estimate of  based on the posterior? Sure!

Bayes estimate is the value , that minimizes the Bayes risk.

Bayes risk is defined as the expected loss averaged over the posterior
distribution.

Put differently, a Bayes estimate  has the lowest posterior expected loss.

That's fine, but what does expected loss mean?

Frequentist risk also exists but we won't go into that here.

θ

θ̂

θ̂
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LOSS FUNCTIONS

A loss function  is a function of a parameter , where  is
some decision about , based on just the data .

For example,  can be the decision to use the sample mean to
estimate , the true population mean.

 determines the penalty for making the decision , if  is the
true parameter;  characterizes the price paid for errors.

A common choice for example, when dealing with point estimation, is the
squared error loss, which has

Bayes risk is thus

and we proceed to find the value , that is, the decision , that

minimizes the Bayes risk.

L(θ, δ(y)) θ δ(y)

θ y

δ(y) = ȳ

θ

L(θ, δ(y)) δ(y) θ

L(θ, δ(y))

L(θ, δ(y)) = (θ − δ(y))2.

ρ(θ, δ) = E [ L(θ, δ(y))| y] = ∫ L(θ, δ(y)) p(θ|y) dθ,

θ̂ δ(y)
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BAYES ESTIMATOR UNDER SQUARED ERROR LOSS

Turns out that, under squared error loss, the decision  that minimizes
the posterior risk is the posterior mean.

Proof: Let . Then,

Expand, then take the partial derivative of  with respect to .

To be continued on the board!

Easy to see then that  is the minimizer.

Well that's great! The posterior mean is often very easy to calculate in
most cases. In the beta-binomial case, we have

δ(y)

L(θ, δ(y)) = (θ − δ(y))2

ρ(θ, δ) = ∫ L(θ, δ(y)) p(θ|y) dθ.

= ∫ (θ − δ(y))2 p(θ|y) dθ.

ρ(θ, δ) δ(y)

δ(y) = E[θ|x]

θ̂ = .
a + y

a + b + n
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WHAT ABOUT OTHER LOSS FUNCTIONS?

Clearly, squared error is only one possible loss function. An alternative is
absolute loss, which has

Absolute loss places less of a penalty on large deviations & the resulting
Bayes estimate is posterior median.

Median is actually relatively easy to estimate.

Recall that for a continuous random variable  with cdf , the median of
the distribution is the value , which satisfies

As long as we know how to evaluate the CDF of the distribution we have,
we can solve for .

Think R!

L(θ, δ(y)) = |θ − δ(y)|.

Y F

z

F(z) = Pr(Y ≤ z) = = Pr(Y ≥ z) = 1 − F(z).
1

2

z
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WHAT ABOUT OTHER LOSS FUNCTIONS?

For the beta-binomial model, the CDF of the beta posterior can be written
as

Then, if  is the median, we have that .

To solve for , apply the inverse CDF .

In R, that's simply

qbeta(0.5,a+y,b+n-y)

For other popular distributions, switch out the beta.

F(z) = Pr(θ ≤ z|y) = ∫
z

0

beta(θ; a + y, b + n − y)dθ.

θ̂ F(θ̂) = 0.5

θ̂ θ̂ = F −1(0.5)
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LOSS FUNCTIONS AND DECISIONS

Loss functions are not specific to estimation problems but are a critical
part of decision making.

For example, suppose you are deciding how much money to bet ($A) on
Duke in the first UNC-Duke men's basketball game this year (next month).

Suppose, if Duke

loses (y = 0), you lose the amount you bet ($A)

wins (y = 1), you gain B per $1 bet

What is a good sampling distribution for y here?

Then, the loss function can be characterized as

with your action being the amount bet A.

When will your bet be "rational"?

L(A, y) = A(1 − y) − y(BA),
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HOW MUCH TO BET ON DUKE?

 is an unknown state, but we can think of it as a new prediction 
given that we have data from win-loss records  that can be
converted into a Bayesian posterior,

with this posterior concentrated slightly to the left of 0.5, if we only use
data on UNC-Duke games (UNC men lead Duke 139-112 all time).

Actually, it might make more sense to focus on more recent head-to-head
data and not the all time record.

In fact, we might want to build a model that predicts the outcome of the
game using historical data & predictors (current team rankings, injuries,
etc).

However, to keep it simple for this illustration, go with the posterior
above.

y yn+1

(y1:n)

θ ∼ beta(an, bn),
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HOW MUCH TO BET ON DUKE?

The Bayes risk for action A is then the expectation of the loss function,

To calculate this as a function of  and find the optimal , we need to
marginalize over the posterior predictive distribution for .

Why are we using the posterior predictive distribution here instead of the
posterior distribution?

Recall from the last class that

Specifically, that the posterior predictive distribution here is ,
with

By the way, what do  and  represent?

ρ(A) = E [ L(A, y)| y1:n] .

A A

y

p(yn+1|y1:n) = ;    yn+1 = 0, 1.
a

yn+1
n b

1−yn+1
n

an + bn

Bernoulli(θ̂)

θ̂ =
an

an + bn

an bn
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HOW MUCH TO BET ON DUKE?

With the loss function , and using the
notation  instead of  (to make it obvious the game has not been
played), the Bayes risk (expected loss) for bet  is

Hence, your bet is rational as long as

Clearly, there is no limit to the amount you should bet if this condition is
satisfied (the loss function is clearly too simple).

Loss function needs to be carefully chosen to lead to a good decision -
finite resources, diminishing returns, limits on donations, etc.

Want more on loss functions, expected loss/utility, or decision problems
in general? Consider taking a course on decision theory (STA623?).

L(A, y) = A(1 − y) − y(BA)

yn+1 y

A

ρ(A) = E [ L(A, yn+1)| y1:n] = E [A(1 − yn+1) − yn+1(BA)| y1:n]

= A E [1 − yn+1| y1:n] − (BA) E [yn+1| y1:n]

= A  (1 − E [yn+1| y1:n]) − (BA) E [yn+1| y1:n]

= A  (1 − E [yn+1| y1:n] (1 + B)) .

E [yn+1| y1:n] (1 + B) > 1.
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FREQUENTIST VS BAYESIAN INTERVALS
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FREQUENTIST CONFIDENCE INTERVALS

Recall that a frequentist confidence interval  has 95%
frequentist coverage for a population parameter  if, before we collect
the data,

This means that 95% of the time, our constructed interval will cover the
true parameter, and 5% of the time it won't.

In any given sample, you don't know whether you're in the lucky 95% or
the unlucky 5%.

You just know that either the interval covers the parameter, or it doesn't
(useful, but not too helpful clearly). There is NOT a 95% chance your
interval covers the true parameter once you have collected the data.

Asking about the definition of a confidence interval is tricky, even for
those who know what they're doing.

[l(y); u(y)]

θ

Pr[l(y) < θ < u(y)|θ] = 0.95.
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BAYESIAN INTERVALS

An interval  has 95% Bayesian coverage for  if

This describes our information about where  lies after we observe the
data.

Fantastic!

This is actually the interpretation people want to give to the frequentist
confidence interval.

Bayesian interval estimates are often generally called credible intervals.

[l(y); u(y)] θ

Pr[l(y) < θ < u(y)|Y = y] = 0.95.

θ
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BAYESIAN QUANTILE-BASED INTERVAL

The easiest way to obtain a Bayesian interval estimate is to use posterior
quantiles.

Easy since we either know the posterior densities exactly or can sample
from the distributions.

To make a  quantile-based credible interval, find numbers
(quantiles)  such that

1. ; and

2. .

This is an equal-tailed interval. Often when researchers refer to a credible
interval, this is what they mean.

100 × (1 − α)

θα/2 < θ1−α/2

Pr(θ < θα/2|Y = y) =
α

2

Pr(θ > θ1−α/2|Y = y) =
α

2
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EQUAL-TAILED QUANTILE-BASED INTERVAL

This is Figure 3.6 from the Hoff book. Focus on the quantile-based
credible interval for now.

Note that there are values of  outside the quantile-based credible
interval, with higher density than some values inside the interval. This
suggests that we can do better with interval estimation.

θ
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HPD REGION

A  highest posterior density (HPD) region is a subset  of
the parameter space  such that

1. ; and

2. If  and , then .

 All points in a HPD region have higher posterior density than points
outside the region.

Note this region is not necessarily a single interval (e.g., in the case of a

multimodal posterior).

The basic idea is to gradually move a horizontal line down across the
density, including in the HPD region all values of  with a density above
the horizontal line.

Stop moving the line down when the posterior probability of the values
of  in the region reaches .

100 × (1 − α) s(y)

Θ

Pr(θ ∈ s(y)|Y = y) = 1 − α

θa ∈ s(y) θb ∉ s(y) Pr(θa|Y = y) > Pr(θb|Y = y)

⇒

θ

θ 1 − α
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HPD REGION

Hoff Figure 3.6 shows how to construct an HPD region.
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POISSON-GAMMA MODEL
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POISSON DISTRIBUTION RECAP

 denotes that each  is a Poisson random variable.

The Poisson distribution is commonly used to model count data consisting
of the number of events in a given time interval.

Some examples: # children, # lifetime romantic partners, # songs on
iPhone, # tumors on mouse, etc.

The Poisson distribution is parameterized by  and the pmf is given by

where

What is the joint likelihood? What is the best guess (MLE) for the Poisson
parameter? What is the sufficient statistic for the Poisson parameter?

Y1, … ,Yn
iid
∼ Po(θ) Yi

θ

Pr[Yi = yi|θ] = ;     yi = 0, 1, 2, … ;     θ > 0.
θ
y

i
e−θ

yi!

E[Yi] = V[Yi] = θ.
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GAMMA DENSITY RECAP

The gamma density will be useful as a prior for parameters that are
strictly positive.

If , we have the pdf

where  is known as the shape parameter and , the rate parameter.

Another parameterization uses the scale parameter  instead of .

Some properties:

θ ∼ Ga(a, b)

f(θ) = θa−1e−bθ.
ba

Γ(a)

a b

ϕ = 1/b b

E[θ] =
a

b

V[θ] =
a

b2

Mode[θ] =   for  a ≥ 1
a − 1

b
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GAMMA DENSITY

If our prior guess of the expected count is  & we have a prior "scale" ,
we can let

and solve for , . We can play the same game if we have a prior
variance or standard deviation.

More properties:

If , then .

If , then for any , .

If , then  has an Inverse-Gamma distribution.

We'll take advantage of these soon!

μ ϕ

E[θ] = μ = ;   V[θ] = μϕ = ,
a

b

a

b2

a b

θ1, … , θp
ind
∼ Ga(ai, b) ∑i θi ∼ Ga(∑i ai, b)

θ ∼ Ga(a, b) c > 0 cθ ∼ Ga(a, b/c)

θ ∼ Ga(a, b) 1/θ
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EXAMPLE GAMMA DISTRIBUTIONS

R has the option to specify either the rate or scale parameter so always

make sure to specify correctly when using "dgamma","rgamma",etc!.
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