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ANNOUNCEMENTS

No make-up for Monday's lab.

Final exam will be either online or take home. Not in class.

Homework one soon...but here are some readings to keep you busy:

1. Efron, B., 1986. Why isn't everyone a Bayesian?. The American
Statistician, 40(1), pp. 1-5.

2. Gelman, A., 2008. Objections to Bayesian statistics. Bayesian
Analysis, 3(3), pp. 445-449.

3. Diaconis, P., 1977. Finite forms of de Finetti's theorem on
exchangeability. Synthese, 36(2), pp. 271-281.

4. Gelman, A., Meng, X. L. and Stern, H., 1996. Posterior predictive
assessment of model fitness via realized discrepancies. Statistica
sinica, pp. 733-760.

5. Dunson, D. B., 2018. Statistics in the big data era: Failures of the
machine. Statistics & Probability Letters, 136, pp. 4-9.
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PROBABILITY REVIEW
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DISCRETE RANDOM VARIABLES

A random variable is discrete if the set of all possible outcomes is
countable.

The probability mass function (pmf) of a discrete random variable Y, p(y)
describes the probability associated with each possible value of Y.

p(y) has the following properties:

1. 0 ≤ p(y) ≤ 1 for all values y ∈ Y.

2. ∑y∈ Yp(y) = 1.
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BERNOULLI DISTRIBUTION

The Bernoulli distribution can be used to describe an experiment with two
outcomes, such as

Flipping a coin (heads or tails);

Vote turnout (vote or not); and

The outcome of a basketball game (win or loss).

In all cases, we can represent this as a binary random variable where the
probability of "success" is θ and the probability of "failure" is 1 − θ.

We usually write this as: Y ∼ Bernoulli(θ), where θ ∈ [0, 1].

It follows that

Pr (Y = y | θ) = θy(1 − θ)1 − y;    y = 0, 1.

What is the mean of this distribution? What is the variance?
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BINOMIAL DISTRIBUTION

The binomial distribution describes the number of successes from n
independent Bernoulli trials.

That is, Y =  number of "successes" in n independent trials and θ is the
probability of success per trial.

We usually write this as: Y ∼ Bin(n, θ), where θ ∈ [0, 1].

The pmf is

Pr (Y = y | θ, n) =
n
y θy(1 − θ)n− y;    y = 0, 1, …, n.

Example: Y =  number of individuals with type I diabetes out of a
sample of n surveyed.

Binomial likelihoods are commonly used in collecting data on
proportions.

What is the mean of this distribution? What is the variance?

( )
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POISSON DISTRIBUTION

Y ∼ Po(θ) denotes that Y is a Poisson random variable.

The Poisson distribution is commonly used to model count data consisting
of the number of events in a given time interval.

The Poisson distribution is parameterized by θ and the pmf is given by

Pr [Y = y | θ] =
θye − θ

y ! ;     y = 0, 1, 2, …;     θ > 0.

Similar to binomial but with no limit on the total number of counts.

What is the mean of this distribution? What is the variance?
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GENERAL DISCRETE DISTRIBUTIONS

Useful to consider general discrete distributions having an arbitrary form.

Suppose Y ∈ {y ⋆

1 , …, y ⋆

k }. Then define Pr (Y = y ⋆

h ) = πh for each 

h = 1, …, k. That is,

Pr [Y = y | π] = ∏
h
π1 [Y= y ⋆

h ]
h ;   y ∈ y ⋆

1 , …, y ⋆

k

where π = (π1, …, πk).

(y ⋆

1 , …, y ⋆

k ) are "atoms" representing possible values for Y.

For example, these may be words in a dictionary or values for education
as a categorical variable. Useful for text data, categorical observations,
etc.

Can also write as Y ∼ ∑k
h= 1πhδy ⋆

h
, where δy ⋆

h
 denotes a unit mass at y ⋆

h .

Often called the categorical distribution or generalized Bernoulli
distribution. Also, see the multinomial distribution.
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CONTINUOUS RANDOM VARIABLES

The probability density function (pdf), p(y) or f(y), of a continuous random
variable Y has slightly different properties:

1. 0 ≤ f(y) for all y ∈ Y.

2. ∫y∈ Rp(y)dy = 1.

The pdf for a continuous random variable is not necessarily less than 1.

Also, p(y) is NOT the probability of value y.

However, if p(y1) > p(y2), we say informally that y1 has a "higher

probability" than y2.
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UNIFORM DENSITY

The simplest example of a continuous density is the uniform density.

Y ∼ Unif(a, b) denotes density is uniform in interval (a, b).

The pdf is simply

f(y) =
1

b − a ;    y ∈ (a, b).

The cdf is

F(y) = Pr (Y ≤ y) = ∫
y
a

1
b − adz =

y − a
b − a

The mean (expectation) is

a + b
2

What is the variance? Also, can you prove the formula for the mean?
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BETA DENSITY

The uniform density can be used as a prior for a probability if 
(a, b) ⊂ (0, 1).

However, it is very inflexible clearly.

Why?

An alternative for y ∈ Y is the beta density, written as Y ∼ Beta(a, b), with

f(y) =
1

B(a, b) y
a− 1(1 − y)b− 1;    y ∈ (0, 1),  a > 0,  b > 0.

where B(a, b) =
Γ(a)Γ(b)
Γ(a + b) . Γ(n) = (n − 1)! for any positive integer n.

As we have already seen, the beta density is quite flexible in
characterizing a broad variety of densities on (0, 1).

Beta(1,1) is the same as Unif(0,1). Workout the pdfs to convince
yourself!
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GAMMA DENSITY

The gamma density will be useful as a prior for parameters that are
strictly positive.

For random variables Y ∼ Ga(a, b), we have the pdf

f(y) =
ba

Γ(a) y
a− 1e − by;    y ∈ (0, ∞),  a > 0,  b > 0.

Properties:

E[Y] =
a
b ;   V[Y] =

a

b2 .

Note: parameterizations of the gamma distribution vary!

Under this parameterization, if Y ∼ Ga(1, θ), then Y ∼ Exp(θ), that is, the
exponential distribution.
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CONTINUOUS JOINT DISTRIBUTIONS

Suppose we have two random variables θ = (θ1, θ2).

Their joint distribution function is

Pr (θ1 ≤ a, θ2 ≤ b) = ∫
a
− ∞∫

b
− ∞p(θ1, θ2)dθ1dθ2,

where p(θ1, θ2) is the joint probability density function (pdf).

The marginal density of θ1 can be obtained by

p(θ1) = ∫
∞
− ∞p(θ1, θ2)dθ2,

which is referred to as marginalizing out θ2.

We will be doing a lot of "marginalizations" so take note!
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FACTORIZING JOINT DENSITIES AND

INDEPENDENCE

The joint density p(θ1, θ2) can be factorized as

p(θ1, θ2) = p(θ1 | θ2)p(θ2),    or   p(θ1, θ2) = p(θ2 | θ1)p(θ1).

For independent random variables, the joint density equals the product of
the marginals:

p(θ1, θ2) = p(θ1)p(θ2).

This implies that p(θ2 | θ1) = p(θ2) and p(θ1 | θ2) = p(θ1) under

independence.

These relationships extend automatically to θ = (θ1, …, θp). That is,

p(θ1, …, θp) =
p

∏
j= 1

p(θj),

under mutual independence of the elements of the θ vector.
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CONDITIONAL INDEPENDENCE

Suppose yi
iid
∼ f(θ) for i = 1, …, n.

Data {yi} are independent & identically distributed draws from

distribution f(θ).

The data are said to be conditionally independent given θ.

L(y; θ) =
n

∏
i= 1

f(yi; θ),

where L(y; θ) =  likelihood of the data conditionally on θ.

The marginal likelihood of the data is

L(y) = ∫L(y; θ)p(θ)dθ.

L(y) can no longer be written as a product of densities as in ∏n
i= 1h(yi);

we lose independence when we marginalize out θ.
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EXCHANGEABILITY

In marginalizing out θ, the observations {yi} are no longer independent.

{yi} are exchangeable if p(y1, …, yn) = p(yπ1
, …, yπn), for all permutations 

π of {1, …, n}.

de Finetti's Theorem: Suppose {yi} are exchangeable under above

definition for any n. Then

p(y1, …, yn) = ∫
n

∏
i= 1

f(yi; θ) p(θ)dθ.

for some θ, prior distribution p(θ) and sampling model f(yi; θ).

Simply put, de Finetti's Theorem states that exchangeable observations
are conditionally independent relative to some parameter.

de Finetti's Theorem is critical in providing a motivation for using
parameters and for putting priors on parameters.

[ ]
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INTRODUCTION TO BAYESIAN

INFERENCE (CONT'D)
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FREQUENTIST INFERENCE

Given data {yi} and an unknown parameter θ, estimate said θ.

How to estimate θ under the frequentist paradigm?

Maximum likelihood estimate (MLE)

Method of moments

and so on...

Frequentist ML estimation finds the one value of θ that maximizes the
likelihood.

Typically uses large sample (asymptotic) theory to obtain confidence
intervals and do hypothesis testing.
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BAYESIAN INFERENCE

Once again, given data {yi} and an unknown parameter θ, estimate

said θ.

Bayesians update their prior information for θ with information in the
data {yi}, to obtain the posterior density p(θ | y).

Personally, I prefer being able to obtain posterior densities that describe
my parameter, instead of estimated summaries (usually measures of
central tendency) along with confidence intervals.

Bayes' theorem - reminder:

p(θ | y) =
p(θ)L(y; θ)

∫Θp(θ̃)L(y; θ̃)dθ̃
=
p(θ)L(y; θ)
L(y)
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COMMENTS ON THE POSTERIOR DENSITY

The posterior density is more concentrated than the prior & quantifies
learning about θ.

In fact, this is the optimal way to learn from data - see discussion in Hoff
chapter 1.

As more & more data become available, posterior density will converge
to a normal (Gaussian) density centered on the MLE (Bayes central limit
theorem).

In finite samples for limited data, the posterior can be highly skewed &
noticeably non-Gaussian.
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CONJUGACY

Starting with an arbitrary prior density p(θ) & likelihood L(y; θ) we may
encounter problems in calculating the posterior density p(θ | y).

In particular, you may notice the denominator in the Bayes' rule:

L(y) = ∫Θp(θ̃)L(y; θ̃)dθ̃.

This integral may not be analytically tractable!

When the prior is conjugate however, the marginal likelihood can be
calculated analytically.

Conjugacy ⇒  the posterior has the same form as the prior.

Often useful to think of hyperparameters of a conjugate prior distribution
as corresponding to having observed a certain number of (historical)
pseudo-observations with properties specified by the parameters.

Conjugate priors make calculations easy but may not represent our prior
information well.
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KERNELS

In Bayesian statistics, the kernel of a pdf omits any multipliers that do not
depend on the random variable or parameter we care about.

For many distributions, the kernel is in a simple form but the normalizing
constant complicates calculations.

If one recognizes the kernel as that matching a known distribution, then
the normalizing factor can be reinstated. This is a very MAJOR TRICK we
will use to calculate posterior distributions.

For example, the normal density is given by

p(y | μ, σ2) =
1

√2πσ2
e −

(y − μ)2

2σ2

but the kernel is just

p(y | μ, σ2) ∝ e −
(y − μ)2

2σ2 .
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BERNOULLI DATA

Back to our example: suppose θ ∈ (0, 1) is the population proportion of
individuals with diabetes in the US.

Suppose we take a sample of n individuals and record whether or not
they have diabetes (as binary: 0,1).

Then we can use the Bernoulli distribution as the sampling distribution.
also, we already established that we can use a beta prior for θ.
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BERNOULLI DATA

Generally, it turns out that if

f(yi; θ) : yi
iid
∼ Bernoulli(θ) for i = 1, …, n, and

p(θ) : θ ∼ Beta(a, b),

then the posterior distribution is also a beta distribution.

Can we derive the posterior distribution and its parameters? Let's do
some work on the board!

Updating a beta prior with a Bernoulli likelihood leads to a beta
posterior - we have conjugacy!

Specifically, we have.

p(θ | {yi}) : θ | {yi} ∼ Beta(a + ∑ yi, b + n − ∑ yi).

This is the beta-Bernoulli model. More generally, this is just the beta-
binomial model.
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BETA-BINOMIAL IN MORE DETAIL

Suppose the likelihood of the data is

L(y; θ) =
n
y θy(1 − θ)n− y.

Suppose also that we have a Beta(a, b) prior on the probability θ.

Then the posterior density then has the beta form

π(θ | y) = Beta(a + y, b + n − y).

The posterior has expectation

E(θ | y) =
a + y

a + b + n =
a + b

a + b + n × prior mean +
n

a + b + n × sample mean.

For this specification, sometimes a and b are interpreted as "prior data"
with a interpreted as the prior number of 1's, b as the prior number of
0's, and a + b as the prior sample size.

As we get more and more data, the majority of our information about θ
comes from the data as opposed to the prior.

( )
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BINOMIAL DATA

For example, suppose you want to find the Bayesian estimate of the
probability θ that a coin comes up heads.

Before you see the data, you express your uncertainty about θ through
the prior p(θ) = Beta(2, 2)

Now suppose you observe 10 tosses, of which only 1 was heads.

Then, the posterior density p(θ | y, n) is Beta(3, 11).
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BINOMIAL DATA

Recall that the mean of Beta(a, b) is a / (a + b).

That means, before you saw the data, you thought the mean for θ was
2/(2+2) = 0.5.

However, after seeing the data, you believe it is 3/(3+11) = 0.214.

The variance of Beta(a, b) is ab / [(a + b)2(a + b + 1)].

So before you saw data, your uncertainty about θ (i.e., your standard

deviation) was √4/ [42 × 5] = 0.22.

However, after seeing 1 Heads in 10 tosses, your uncertainty is 0.106.

Clearly, as the number of tosses goes to infinity, your uncertainty goes to
zero.
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OPERATIONALIZING DATA ANALYSIS

We will explore another example soon but first, how should we approach
data analysis in general?

Step 1. State the question.

Step 2. Collect the data.

Step 3. Explore the data.

Step 4. Formulate and state a modeling framework.

Step 5. Check your models.

Step 6. Answer the question.
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EXAMPLE: RARE EVENTS

Step 1. State the question:

What is the prevalence of an infectious disease in a small city?

Why? High prevalence means more public health precautions are
recommended.

Step 2. Collect the data:

Suppose you collect a small random sample of 20 individuals.

Step 3. Explore the data:

Let Y denote the unknown number of infected individuals in the
sample.
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EXAMPLE: RARE EVENTS

Step 4. Formulate and state a modeling framework:

Parameter of interest: θ is the fraction of infected individuals in the
city.

Sampling model: a reasonable model for Y can be Bin(20, θ)
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EXAMPLE: RARE EVENTS

Step 4. Formulate and state a modeling framework:

Prior specification: information from previous studies — infection rate
in “comparable cities” ranges from 0.05 to 0.20 with an average of
0.10. So maybe a standard deviation of roughly 0.05?

What is a good prior? The expected value of θ close to 0.10 and
the variance close to 0.05.

Possible option: Beta(3.5, 31.5) or maybe even Beta(3, 32)?
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EXAMPLE: RARE EVENTS

Step 4. Formulate and state a modeling framework:

Under Beta(3, 32), Pr (θ < 0.1) ≈ 0.67.

Posterior distribution for the model: (θ | Y = y) = Beta(a + y, b + n − y)

Suppose Y = 0. Then, (θ | Y = y) = Beta(3, 32 + 20)
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EXAMPLE: RARE EVENTS

Step 5. Check your models:

Compare performance of posterior mean and posterior probability
that θ < 0.1.

Under Beta(3, 52),

Pr (θ < 0.1 | Y = y) ≈ 0.92. More confidence in low values of θ.

For E(θ | Y = y), we have

E(θ | y) =
a + y

a + b + n =
3

52 = 0.058.

Recall that the prior mean is a / (a + b) = 0.09. Thus, we can see
how that contributes to the prior mean.

E(θ | y) =
a + b

a + b + n × prior mean +
n

a + b + n × sample mean

=
a + b

a + b + n ×
a

a + b +
n

a + b + n ×
y
n

=
35
52 ×

3
35 +

20
52 ×

0
n =

3
52 = 0.058.
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EXAMPLE: RARE EVENTS

Step 6. Answer the question:

People with low prior expectations are generally at least 90% certain
that the infection rate is below 0.10.

π(θ | Y) is to the left of π(θ) because the observation Y = 0 provides
evidence of a low value of θ.

π(θ | Y) is more peaked than π(θ) because it combines information and
so contains more information than π(θ) alone.

The posterior expectation is 0.058.

The posterior mode is 0.04.

Note, for Beta(a, b), the mode is (a − 1) / (a + b − 2).

The posterior probability that θ < 0.1 is 0.92.
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