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ANNOUNCEMENTS

= No make-up for Monday's lab.

= Final exam will be either online or take home. Not in class.

= Homework one soon...but here are some readings to keep you busy:

1.
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Efron, B., 1986. Why isn't everyone a Bayesian2. The American
Statistician, 40(1), pp. 1-5.

. Gelman, A., 2008. Objections to Bayesian statistics. Bayesian

Analysis, 3(3), pp. 445-449.

. Diaconis, P., 1977. Finite forms of de Finetti's theorem on

exchangeability. Synthese, 36(2), pp. 271-281.

Gelman, A., Meng, X. L. and Stern, H., 1996. Posterior predictive

assessment of model fitness via realized discrepancies. Statistica
sinica, pp. 733-760.

. Dunson, D. B., 2018. Statistics in the big data era: Failures of the

machine. Statistics & Probability Letters, 136, pp. 4-9.
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OUTLINE

= Probability review

» Random variables
= Joint distributions

» Independence and exchangeability
= Introduction to Bayesian Inference (Cont'd)

= Conjugacy

Kernels

Bernoulli and binomial data

Selecting priors

Truncated priors
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PROBABILITY REVIEW
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DISCRETE RANDOM VARIABLES

= A random variable is discrete if the set of all possible outcomes is
countable.

» The probability mass function (pmf) of a discrete random variable Y, p(3)
describes the probability associated with each possible value of Y.

= p(y) has the following properties:

1.0<p(y) <1 forall valves y € Y.

2' ZyEYp(y) = 1.
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BERNOULLI DISTRIBUTION

= The Bernoulli distribution can be used to describe an experiment with two
outcomes, such as

» Flipping a coin (heads or tails);
= Vote turnout (vote or not); and

» The outcome of a basketball game (win or loss).

= In all cases, we can represent this as a binary random variable where the
probability of "success" is 9 and the probability of "failure" is 1 - 6.

= We usually write this as: Y ~ Bernoulli(9), where 0 € [0, 1].

= |t follows that
Pr(Y=y|0) =61 -6)7Y;, y=0,1.

= What is the mean of this distribution? What is the variance?
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BINOMIAL DISTRIBUTION

The binomial distribution describes the number of successes from »
independent Bernoulli trials.

That is, Y = number of "successes" in n independent trials and 9 is the
probability of success per trial.

We usually write this as: Y ~ Bin(n, 0), where 6 € [0, 1].

The pmf is
n
Pr(Y=y|0,n)=(y)@y(l—e)”_y; y=0,1,...,n

Example: Y = number of individuals with type | diabetes out of a
sample of n surveyed.

Binomial likelihoods are commonly used in collecting data on
proportions.

What is the mean of this distribution? What is the variance?
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POISSON DISTRIBUTION

Y ~ Po(0) denotes that Y is a Poisson random variable.

The Poisson distribution is commonly used to model count data consisting
of the number of events in a given time interval.

The Poisson distribution is parameterized by 0 and the pmf is given by

@ve 0
y! ;

Pr[Y=y|0] = y=0,1,2,...; 6>0.

Similar to binomial but with no limit on the total number of counts.

What is the mean of this distribution? What is the variance?
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(GENERAL DISCRETE DISTRIBUTIONS

= Useful to consider general discrete distributions having an arbitrary form.

= Suppose Y € {y,...,y }. Then define Pr (¥ =y,)=r, for each
h=1,...,k Thatis,

1[Y=y* * o
Pr[Y=y|n] = Hﬂh[ il YEYI Vi
h

where 7 = (7, ..., T)).
* * . .
= (y/,...,y; ) are "atoms" representing possible values for Y.

= For example, these may be words in a dictionary or values for education
as a categorical variable. Useful for text data, categorical observations,
etc.

= Can also write as ¥ ~ Z;(z:ln'héyh*' where Oy denotes a unit mass aty;.

» Often called the categorical distribution or generalized Bernoulli
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CONTINUOUS RANDOM VARIABLES

» The probability density function (pdf), p(y) or Ay), of a continuous random
variable Y has slightly different properties:

1.0<fy) fordlly €.

2. [, cpp)dy = 1.
= The pdf for a continuous random variable is not necessarily less than 1.
» Also, p(y) is NOT the probability of value y.

= However, if p(y,) > p(y,), we say informally that y, has a "higher
probability" than y,.
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UNIFORM DENSITY

The simplest example of a continuous density is the uniform density.

Y ~ Unif(a, b) denotes density is uniform in interval (a, b).

The pdf is simply

The cdf is

y 1 y—a
Fy)= Pr(Y<y)= ab—adzzb—a

The mean (expectation) is

a+b
2

What is the variance? Also, can you prove the formula for the mean?
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BETA DENSITY

= The uniform density can be used as a prior for a probability if
(a, b) C (0, 1).

= However, it is very inflexible clearly.
Why?

= An alternative for y € Y is the beta density, written as Y ~ Beta(a, b), with

1

= 34 b)y"*l(l 'L ye 1), a>0, b>0.
[(a)I'(b)
where B(a, b) = Ta+b) ['(n) = (n—1)! for any positive integer n.

= As we have already seen, the beta density is quite flexible in
characterizing a broad variety of densities on (0, 1).

= Beta(1,1) is the same as Unif(0,1). Workout the pdfs to convince
yourself!
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GAMMA DENSITY

The gamma density will be useful as a prior for parameters that are

strictly positive.

For random variables Y ~ Ga(a, b), we have the pdf

ba
1) = r(a);\/‘“lffby; y € (0,0), a>0, b>0.

Properties:

a

a
E[Y] = 3; VIY]= .

Note: parameterizations of the gamma distribution vary!

Under this parameterization, if Y ~ Ga(l, ), then Y ~ Exp(0), that is, the

exponential distribution.
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CONTINUOUS JOINT DISTRIBUTIONS

Suppose we have two random variables 6 = (6,, 6,).

Their joint distribution function is
a b
Pr(9, <a,0,<b)=["_[" p(6,0,)d6,d0,,

where p(6,, 6,) is the joint probability density function (pdf).

The marginal density of 6, can be obtained by

p0)) = [~ p(6, 6,)d6,,

which is referred to as marginalizing out 6,.

We will be doing a lot of "marginalizations" so take note!
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FACTORIZING JOINT DENSITIES AND
INDEPENDENCE

The joint density p(0,, 0,) can be factorized as
p(@l, 92) = p(¢91 | 92)17(92): or p(ﬁl, 92) =p(92 | 91)]7(‘91)-

= For independent random variables, the joint density equals the product of
the marginals:

p(01,0,) = p(6))p(0,).

= This implies that p(6,|6,) = p(9,) and p(9,16,) = p(9,) under

independence.

= These relationships extend automatically to 6 = (6, ..., 0,)- That is,

p
p(0y,....0,) = [ | p(o)),
j=1

under mutual independence of the elements of the 0 vector.
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CONDITIONAL INDEPENDENCE

iid
= Suppose y; ~ fid) fori=1,....n.

= Data {y.} are independent & identically distributed draws from
distribution £0).

» The data are said to be conditionally independent given 6.
Ly;9) = [0
i=1

where L(y; 0) = likelihood of the data conditionally on 6.
= The marginal likelihood of the data is

L) = [ L0 O)p(&)de.

= L(y) can no longer be written as a product of densities as in [1/_,A(v,);

we lose independence when we marginalize out 6.
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EXCHANGEABILITY

= In marginalizing out 6, the observations {y;} are no longer independent.

= {y} are exchangeable if p(y,, ..., »)) =p(yﬂ1, ..,y ), for all permutations
mof {1,...,n}.

= de Finetti's Theorem: Suppose {y;} are exchangeable under above

definition for any . Then

PO V) = f Hf(yl-; 0) ]p(e)de.
i=1

for some 6, prior distribution p(0) and sampling model £y ; 6).

= Simply put, de Finetti's Theorem states that exchangeable observations
are conditionally independent relative to some parameter.

= de Finetti's Theorem is critical in providing a motivation for using
parameters and for putting priors on parameters.
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INTRODUCTION TO BAYESIAN
INFERENCE (CONT'D)
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FREQUENTIST INFERENCE

Given data {y;} and an unknown parameter ¢, estimate said 6.

How to estimate ¢ under the frequentist paradigm?

» Maximum likelihood estimate (MLE)
» Method of moments

= and so on...

Frequentist ML estimation finds the one value of 9 that maximizes the

likelihood.

Typically uses large sample (asymptotic) theory to obtain confidence
intervals and do hypothesis testing.
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BAYESIAN INFERENCE

= Once again, given data {y;} and an unknown parameter 0, estimate
said 0.

= Bayesians update their prior information for 9 with information in the
data {y.}, to obtain the posterior density p(9]y).

= Personadlly, | prefer being able to obtain posterior densities that describe
my parameter, instead of estimated summaries (usually measures of
central tendency) along with confidence intervals.

= Bayes' theorem - reminder:

p(O)L(y; 0) :p(ﬁ)L(y; 0)
JepO)L(; 0)d0 L0

pO]y) =
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COMMENTS ON THE POSTERIOR DENSITY

= The posterior density is more concentrated than the prior & quantifies
learning about 6.

= In fact, this is the optimal way to learn from data - see discussion in Hoff
chapter 1.

= As more & more data become available, posterior density will converge
to a normal (Gaussian) density centered on the MLE (Bayes central limit
theorem).

= In finite samples for limited data, the posterior can be highly skewed &
noticeably non-Gaussian.
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CONJUGACY

= Starting with an arbitrary prior density p(0) & likelihood L(y; ) we may
encounter problems in calculating the posterior density p(9|y).

= In particular, you may notice the denominator in the Bayes' rule:
L) = [ op@)L(y; O)d.
This integral may not be analytically tractable!

= When the prior is conjugate however, the marginal likelihood can be
calculated analytically.

= Conjugacy = the posterior has the same form as the prior.

= Often useful to think of hyperparameters of a conjugate prior distribution
as corresponding to having observed a certain number of (historical)
pseudo-observations with properties specified by the parameters.

= Conjugate priors make calculations easy but may not represent our prior
information well.
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KERNELS

= In Bayesian statistics, the kernel of a pdf omits any multipliers that do not
depend on the random variable or parameter we care about.

= For many distributions, the kernel is in a simple form but the normalizing
constant complicates calculations.

= If one recognizes the kernel as that matching a known distribution, then
the normalizing factor can be reinstated. This is a very MAJOR TRICK we
will use to calculate posterior distributions.

= For example, the normal density is given by

, 1 o-p?
POy |p, 0°) = >¢ 252
\/27[0

but the kernel is just

R
POl o?) e 50
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BERNOULLI DATA

= Back to our example: suppose 0 € (0, 1) is the population proportion of
individuals with diabetes in the US.

= Suppose we take a sample of » individuals and record whether or not
they have diabetes (as binary: 0,1).

= Then we can use the Bernoulli distribution as the sampling distribution.
also, we already established that we can use a beta prior for 6.
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BERNOULLI DATA

Generally, it turns out that if

iid
" fly; 0):y; ~ Bernoulli(9) fori =1, ...,n, and

= p(0):0 ~ Beta(a, D),
then the posterior distribution is also a beta distribution.

Can we derive the posterior distribution and its parameters? Let's do
some work on the board!

Updating a beta prior with a Bernoulli likelihood leads to a beta
posterior - we have conjugacy!

Specifically, we have.
PO {y}):0|{y;} ~Beta(a+ Y.y b+n— Y y).

This is the beta-Bernoulli model. More generally, this is just the beta-
binomial model.
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BETA-BINOMIAL IN MORE DETAIL

Suppose the likelihood of the data is
L(y; 6) = (; )eya — gy,
Suppose also that we have a Beta(a, b) prior on the probability 6.

Then the posterior density then has the beta form

n(@|y) = Beta(a +y,b +n—y).

The posterior has expectation

aty a+b n

= = 1 +
E(@|y) N a+b+n><pr10rmean Y

X sample mean.

For this specification, sometimes a and b are interpreted as "prior data"
with a interpreted as the prior number of 1's, 5 as the prior number of
0's, and a + b as the prior sample size.

As we get more and more data, the majority of our information about 6

comes from the data as opposed to the prior.
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BINOMIAL DATA

= For example, suppose you want to find the Bayesian estimate of the
probability 6 that a coin comes up heads.

= Before you see the data, you express your uncertainty about 6 through
the prior p(0) = Beta(2, 2)

= Now suppose you observe 10 tosses, of which only 1 was heads.

= Then, the posterior density p(0 | y, n) is Beta(3, 11).

STA 602L 27 / 35



BINOMIAL DATA

= Recall that the mean of Beta(a, b) is a/(a + b).

» That means, before you saw the data, you thought the mean for 9 was

2/(2+2) = 0.5.
= However, after seeing the data, you believe itis 3/(3+11) = 0.214.
= The variance of Beta(a, b) is ab/[(a + b)*(a + b + 1)].

» So before you saw data, your uncertainty about 9 (i.e., your standard
deviation) was +[4/[42 x 5] = 0.22.

= However, after seeing 1 Heads in 10 tosses, your uncertainty is 0.106.

= Clearly, as the number of tosses goes to infinity, your uncertainty goes to
zero.
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OPERATIONALIZING DATA ANALYSIS

We will explore another example soon but first, how should we approach
data analysis in general?

= Step 1. State the question.

Step 2. Collect the data.

Step 3. Explore the data.

Step 4. Formulate and state a modeling framework.

Step 5. Check your models.

Step 6. Answer the question.
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EXAMPLE: RARE EVENTS

= Step 1. State the question:

» What is the prevalence of an infectious disease in a small city?

= Why? High prevalence means more public health precautions are
recommended.

» Step 2. Collect the data:
» Suppose you collect a small random sample of 20 individuals.
= Step 3. Explore the data:

= Let Y denote the unknown number of infected individuals in the
sample.
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EXAMPLE: RARE EVENTS

= Step 4. Formulate and state a modeling framework:

» Parameter of interest: 6 is the fraction of infected individuals in the
city.

» Sampling model: a reasonable model for ¥ can be Bin(20, 9)

0.3-
freq
005
foe- | X
£ | [E
01- ’ Mo
0.0- lll I d | ‘ | 1.
0 5 10 15 20
count
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EXAMPLE: RARE EVENTS

= Step 4. Formulate and state a modeling framework:

= Prior specification: information from previous studies — infection rate
in “comparable cities” ranges from 0.05 to 0.20 with an average of
0.10. So maybe a standard deviation of roughly 0.052

» What is a good prior2 The expected value of ¢ close to 0.10 and
the variance close to 0.05.

» Possible option: Beta(3.5,31.5) or maybe even Beta(3, 32)2
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EXAMPLE: RARE EVENTS

= Step 4. Formulate and state a modeling framework:
= Under Beta(3,32), Pr(6<0.1)~ 0.67.
» Posterior distribution for the model: (0| Y =y) = Beta(a + y, b+ n—y)
» Suppose Y = 0. Then, (6]Y = y) = Beta(3, 32 + 20)

— 7(9lx)
— 7(¢)
‘C_D -]
2
D
C
(V)
©
m —
O p—
| | I | | |
0.0 0.2 04 0.6 0.8 1.0
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EXAMPLE: RARE EVENTS

= Step 5. Check your models:

» Compare performance of posterior mean and posterior probability
that 0 < 0.1.

» Under Beta(3, 52),
» Pr(0<0.11Y=y)=0.92. More confidence in low values of 6.

» For E(0|Y = y), we have

= Recall that the prior mean is a/(a + b) = 0.09. Thus, we can see
how that contributes to the prior mean.

a+b . n
pPar— ><pr10rmean+a+b+n
a+b a n
X aF
atb+n a+b a+b+n
35 3 20 O

3
e — - + —_— —_ = — =
52 35 50 %y T 5 0038

x sample mean

E@1y) =

y
X —
n
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EXAMPLE: RARE EVENTS

= Step 6. Answer the question:

» People with low prior expectations are generally at least 90% certain
that the infection rate is below 0.10.

» 7(0|Y) is to the left of 7(0) because the observation Y = 0 provides
evidence of a low value of 4.

» 7(0|Y) is more peaked than z(0) because it combines information and
so contains more information than 7(0) alone.

» The posterior expectation is 0.058.
» The posterior mode is 0.04.

= Note, for Beta(a, b), the mode is (a —1)/(a+ b —2).
» The posterior probability that 6 < 0.1 is 0.92.
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